This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qsss.1 | |- ( ph -> R Er A ) |
|
| Assertion | qsss | |- ( ph -> ( A /. R ) C_ ~P A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsss.1 | |- ( ph -> R Er A ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | 2 | elqs | |- ( x e. ( A /. R ) <-> E. y e. A x = [ y ] R ) |
| 4 | 1 | ecss | |- ( ph -> [ y ] R C_ A ) |
| 5 | sseq1 | |- ( x = [ y ] R -> ( x C_ A <-> [ y ] R C_ A ) ) |
|
| 6 | 4 5 | syl5ibrcom | |- ( ph -> ( x = [ y ] R -> x C_ A ) ) |
| 7 | velpw | |- ( x e. ~P A <-> x C_ A ) |
|
| 8 | 6 7 | imbitrrdi | |- ( ph -> ( x = [ y ] R -> x e. ~P A ) ) |
| 9 | 8 | rexlimdvw | |- ( ph -> ( E. y e. A x = [ y ] R -> x e. ~P A ) ) |
| 10 | 3 9 | biimtrid | |- ( ph -> ( x e. ( A /. R ) -> x e. ~P A ) ) |
| 11 | 10 | ssrdv | |- ( ph -> ( A /. R ) C_ ~P A ) |