This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqger.x | |- X = ( Base ` G ) |
|
| eqger.r | |- .~ = ( G ~QG Y ) |
||
| eqgid.3 | |- .0. = ( 0g ` G ) |
||
| Assertion | eqgid | |- ( Y e. ( SubGrp ` G ) -> [ .0. ] .~ = Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqger.x | |- X = ( Base ` G ) |
|
| 2 | eqger.r | |- .~ = ( G ~QG Y ) |
|
| 3 | eqgid.3 | |- .0. = ( 0g ` G ) |
|
| 4 | 2 | releqg | |- Rel .~ |
| 5 | relelec | |- ( Rel .~ -> ( x e. [ .0. ] .~ <-> .0. .~ x ) ) |
|
| 6 | 4 5 | ax-mp | |- ( x e. [ .0. ] .~ <-> .0. .~ x ) |
| 7 | subgrcl | |- ( Y e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 8 | 7 | adantr | |- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> G e. Grp ) |
| 9 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 10 | 3 9 | grpinvid | |- ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 11 | 8 10 | syl | |- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 12 | 11 | oveq1d | |- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) = ( .0. ( +g ` G ) x ) ) |
| 13 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 14 | 1 13 3 | grplid | |- ( ( G e. Grp /\ x e. X ) -> ( .0. ( +g ` G ) x ) = x ) |
| 15 | 7 14 | sylan | |- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( .0. ( +g ` G ) x ) = x ) |
| 16 | 12 15 | eqtrd | |- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) = x ) |
| 17 | 16 | eleq1d | |- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y <-> x e. Y ) ) |
| 18 | 17 | pm5.32da | |- ( Y e. ( SubGrp ` G ) -> ( ( x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) <-> ( x e. X /\ x e. Y ) ) ) |
| 19 | 1 | subgss | |- ( Y e. ( SubGrp ` G ) -> Y C_ X ) |
| 20 | 1 3 | grpidcl | |- ( G e. Grp -> .0. e. X ) |
| 21 | 7 20 | syl | |- ( Y e. ( SubGrp ` G ) -> .0. e. X ) |
| 22 | 1 9 13 2 | eqgval | |- ( ( G e. Grp /\ Y C_ X ) -> ( .0. .~ x <-> ( .0. e. X /\ x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) ) ) |
| 23 | 3anass | |- ( ( .0. e. X /\ x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) <-> ( .0. e. X /\ ( x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) ) ) |
|
| 24 | 22 23 | bitrdi | |- ( ( G e. Grp /\ Y C_ X ) -> ( .0. .~ x <-> ( .0. e. X /\ ( x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) ) ) ) |
| 25 | 24 | baibd | |- ( ( ( G e. Grp /\ Y C_ X ) /\ .0. e. X ) -> ( .0. .~ x <-> ( x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) ) ) |
| 26 | 7 19 21 25 | syl21anc | |- ( Y e. ( SubGrp ` G ) -> ( .0. .~ x <-> ( x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) ) ) |
| 27 | 19 | sseld | |- ( Y e. ( SubGrp ` G ) -> ( x e. Y -> x e. X ) ) |
| 28 | 27 | pm4.71rd | |- ( Y e. ( SubGrp ` G ) -> ( x e. Y <-> ( x e. X /\ x e. Y ) ) ) |
| 29 | 18 26 28 | 3bitr4d | |- ( Y e. ( SubGrp ` G ) -> ( .0. .~ x <-> x e. Y ) ) |
| 30 | 6 29 | bitrid | |- ( Y e. ( SubGrp ` G ) -> ( x e. [ .0. ] .~ <-> x e. Y ) ) |
| 31 | 30 | eqrdv | |- ( Y e. ( SubGrp ` G ) -> [ .0. ] .~ = Y ) |