This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group homomorphism F is injective if and only if its kernel is the singleton { N } . (Contributed by Thierry Arnoux, 27-Oct-2017) (Proof shortened by AV, 24-Oct-2019) (Revised by Thierry Arnoux, 13-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1ghm0to0.a | |- A = ( Base ` R ) |
|
| f1ghm0to0.b | |- B = ( Base ` S ) |
||
| f1ghm0to0.n | |- N = ( 0g ` R ) |
||
| f1ghm0to0.0 | |- .0. = ( 0g ` S ) |
||
| Assertion | kerf1ghm | |- ( F e. ( R GrpHom S ) -> ( F : A -1-1-> B <-> ( `' F " { .0. } ) = { N } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ghm0to0.a | |- A = ( Base ` R ) |
|
| 2 | f1ghm0to0.b | |- B = ( Base ` S ) |
|
| 3 | f1ghm0to0.n | |- N = ( 0g ` R ) |
|
| 4 | f1ghm0to0.0 | |- .0. = ( 0g ` S ) |
|
| 5 | simpl | |- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. ( `' F " { .0. } ) ) -> ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) ) |
|
| 6 | f1fn | |- ( F : A -1-1-> B -> F Fn A ) |
|
| 7 | 6 | adantl | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) -> F Fn A ) |
| 8 | elpreima | |- ( F Fn A -> ( x e. ( `' F " { .0. } ) <-> ( x e. A /\ ( F ` x ) e. { .0. } ) ) ) |
|
| 9 | 7 8 | syl | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) -> ( x e. ( `' F " { .0. } ) <-> ( x e. A /\ ( F ` x ) e. { .0. } ) ) ) |
| 10 | 9 | biimpa | |- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. ( `' F " { .0. } ) ) -> ( x e. A /\ ( F ` x ) e. { .0. } ) ) |
| 11 | 10 | simpld | |- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. ( `' F " { .0. } ) ) -> x e. A ) |
| 12 | 10 | simprd | |- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. ( `' F " { .0. } ) ) -> ( F ` x ) e. { .0. } ) |
| 13 | fvex | |- ( F ` x ) e. _V |
|
| 14 | 13 | elsn | |- ( ( F ` x ) e. { .0. } <-> ( F ` x ) = .0. ) |
| 15 | 12 14 | sylib | |- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. ( `' F " { .0. } ) ) -> ( F ` x ) = .0. ) |
| 16 | 1 2 3 4 | f1ghm0to0 | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ x e. A ) -> ( ( F ` x ) = .0. <-> x = N ) ) |
| 17 | 16 | biimpd | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ x e. A ) -> ( ( F ` x ) = .0. -> x = N ) ) |
| 18 | 17 | 3expa | |- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. A ) -> ( ( F ` x ) = .0. -> x = N ) ) |
| 19 | 18 | imp | |- ( ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. A ) /\ ( F ` x ) = .0. ) -> x = N ) |
| 20 | 5 11 15 19 | syl21anc | |- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. ( `' F " { .0. } ) ) -> x = N ) |
| 21 | 20 | ex | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) -> ( x e. ( `' F " { .0. } ) -> x = N ) ) |
| 22 | velsn | |- ( x e. { N } <-> x = N ) |
|
| 23 | 21 22 | imbitrrdi | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) -> ( x e. ( `' F " { .0. } ) -> x e. { N } ) ) |
| 24 | 23 | ssrdv | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) -> ( `' F " { .0. } ) C_ { N } ) |
| 25 | ghmgrp1 | |- ( F e. ( R GrpHom S ) -> R e. Grp ) |
|
| 26 | 1 3 | grpidcl | |- ( R e. Grp -> N e. A ) |
| 27 | 25 26 | syl | |- ( F e. ( R GrpHom S ) -> N e. A ) |
| 28 | 3 4 | ghmid | |- ( F e. ( R GrpHom S ) -> ( F ` N ) = .0. ) |
| 29 | fvex | |- ( F ` N ) e. _V |
|
| 30 | 29 | elsn | |- ( ( F ` N ) e. { .0. } <-> ( F ` N ) = .0. ) |
| 31 | 28 30 | sylibr | |- ( F e. ( R GrpHom S ) -> ( F ` N ) e. { .0. } ) |
| 32 | 1 2 | ghmf | |- ( F e. ( R GrpHom S ) -> F : A --> B ) |
| 33 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 34 | elpreima | |- ( F Fn A -> ( N e. ( `' F " { .0. } ) <-> ( N e. A /\ ( F ` N ) e. { .0. } ) ) ) |
|
| 35 | 32 33 34 | 3syl | |- ( F e. ( R GrpHom S ) -> ( N e. ( `' F " { .0. } ) <-> ( N e. A /\ ( F ` N ) e. { .0. } ) ) ) |
| 36 | 27 31 35 | mpbir2and | |- ( F e. ( R GrpHom S ) -> N e. ( `' F " { .0. } ) ) |
| 37 | 36 | snssd | |- ( F e. ( R GrpHom S ) -> { N } C_ ( `' F " { .0. } ) ) |
| 38 | 37 | adantr | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) -> { N } C_ ( `' F " { .0. } ) ) |
| 39 | 24 38 | eqssd | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) -> ( `' F " { .0. } ) = { N } ) |
| 40 | 32 | adantr | |- ( ( F e. ( R GrpHom S ) /\ ( `' F " { .0. } ) = { N } ) -> F : A --> B ) |
| 41 | simpl | |- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> F e. ( R GrpHom S ) ) |
|
| 42 | simpr2l | |- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> x e. A ) |
|
| 43 | simpr2r | |- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> y e. A ) |
|
| 44 | simpr3 | |- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( F ` x ) = ( F ` y ) ) |
|
| 45 | eqid | |- ( `' F " { .0. } ) = ( `' F " { .0. } ) |
|
| 46 | eqid | |- ( -g ` R ) = ( -g ` R ) |
|
| 47 | 1 4 45 46 | ghmeqker | |- ( ( F e. ( R GrpHom S ) /\ x e. A /\ y e. A ) -> ( ( F ` x ) = ( F ` y ) <-> ( x ( -g ` R ) y ) e. ( `' F " { .0. } ) ) ) |
| 48 | 47 | biimpa | |- ( ( ( F e. ( R GrpHom S ) /\ x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) -> ( x ( -g ` R ) y ) e. ( `' F " { .0. } ) ) |
| 49 | 41 42 43 44 48 | syl31anc | |- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( x ( -g ` R ) y ) e. ( `' F " { .0. } ) ) |
| 50 | simpr1 | |- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( `' F " { .0. } ) = { N } ) |
|
| 51 | 49 50 | eleqtrd | |- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( x ( -g ` R ) y ) e. { N } ) |
| 52 | ovex | |- ( x ( -g ` R ) y ) e. _V |
|
| 53 | 52 | elsn | |- ( ( x ( -g ` R ) y ) e. { N } <-> ( x ( -g ` R ) y ) = N ) |
| 54 | 51 53 | sylib | |- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( x ( -g ` R ) y ) = N ) |
| 55 | 25 | adantr | |- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> R e. Grp ) |
| 56 | 1 3 46 | grpsubeq0 | |- ( ( R e. Grp /\ x e. A /\ y e. A ) -> ( ( x ( -g ` R ) y ) = N <-> x = y ) ) |
| 57 | 55 42 43 56 | syl3anc | |- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( ( x ( -g ` R ) y ) = N <-> x = y ) ) |
| 58 | 54 57 | mpbid | |- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> x = y ) |
| 59 | 58 | 3anassrs | |- ( ( ( ( F e. ( R GrpHom S ) /\ ( `' F " { .0. } ) = { N } ) /\ ( x e. A /\ y e. A ) ) /\ ( F ` x ) = ( F ` y ) ) -> x = y ) |
| 60 | 59 | ex | |- ( ( ( F e. ( R GrpHom S ) /\ ( `' F " { .0. } ) = { N } ) /\ ( x e. A /\ y e. A ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 61 | 60 | ralrimivva | |- ( ( F e. ( R GrpHom S ) /\ ( `' F " { .0. } ) = { N } ) -> A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 62 | dff13 | |- ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
|
| 63 | 40 61 62 | sylanbrc | |- ( ( F e. ( R GrpHom S ) /\ ( `' F " { .0. } ) = { N } ) -> F : A -1-1-> B ) |
| 64 | 39 63 | impbida | |- ( F e. ( R GrpHom S ) -> ( F : A -1-1-> B <-> ( `' F " { .0. } ) = { N } ) ) |