This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqg0el.1 | |- .~ = ( G ~QG H ) |
|
| Assertion | eqg0el | |- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( [ X ] .~ = H <-> X e. H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqg0el.1 | |- .~ = ( G ~QG H ) |
|
| 2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 3 | 2 1 | eqger | |- ( H e. ( SubGrp ` G ) -> .~ Er ( Base ` G ) ) |
| 4 | 3 | adantl | |- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> .~ Er ( Base ` G ) ) |
| 5 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 6 | 2 5 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) |
| 7 | 6 | adantr | |- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( 0g ` G ) e. ( Base ` G ) ) |
| 8 | 4 7 | erth | |- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( ( 0g ` G ) .~ X <-> [ ( 0g ` G ) ] .~ = [ X ] .~ ) ) |
| 9 | 2 1 5 | eqgid | |- ( H e. ( SubGrp ` G ) -> [ ( 0g ` G ) ] .~ = H ) |
| 10 | 9 | adantl | |- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> [ ( 0g ` G ) ] .~ = H ) |
| 11 | 10 | eqeq1d | |- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( [ ( 0g ` G ) ] .~ = [ X ] .~ <-> H = [ X ] .~ ) ) |
| 12 | eqcom | |- ( H = [ X ] .~ <-> [ X ] .~ = H ) |
|
| 13 | 12 | a1i | |- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( H = [ X ] .~ <-> [ X ] .~ = H ) ) |
| 14 | 8 11 13 | 3bitrrd | |- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( [ X ] .~ = H <-> ( 0g ` G ) .~ X ) ) |
| 15 | errel | |- ( .~ Er ( Base ` G ) -> Rel .~ ) |
|
| 16 | relelec | |- ( Rel .~ -> ( X e. [ ( 0g ` G ) ] .~ <-> ( 0g ` G ) .~ X ) ) |
|
| 17 | 3 15 16 | 3syl | |- ( H e. ( SubGrp ` G ) -> ( X e. [ ( 0g ` G ) ] .~ <-> ( 0g ` G ) .~ X ) ) |
| 18 | 17 | adantl | |- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( X e. [ ( 0g ` G ) ] .~ <-> ( 0g ` G ) .~ X ) ) |
| 19 | 10 | eleq2d | |- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( X e. [ ( 0g ` G ) ] .~ <-> X e. H ) ) |
| 20 | 14 18 19 | 3bitr2d | |- ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( [ X ] .~ = H <-> X e. H ) ) |