This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for emcl . By the previous lemmas, F and G must approach a common limit, which is gamma by definition. (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | emcl.1 | |- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
|
| emcl.2 | |- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
||
| emcl.3 | |- H = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
||
| emcl.4 | |- T = ( n e. NN |-> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) ) |
||
| Assertion | emcllem6 | |- ( F ~~> gamma /\ G ~~> gamma ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | emcl.1 | |- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
|
| 2 | emcl.2 | |- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
|
| 3 | emcl.3 | |- H = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
|
| 4 | emcl.4 | |- T = ( n e. NN |-> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) ) |
|
| 5 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 6 | 1zzd | |- ( T. -> 1 e. ZZ ) |
|
| 7 | oveq2 | |- ( n = k -> ( 1 / n ) = ( 1 / k ) ) |
|
| 8 | 7 | oveq2d | |- ( n = k -> ( 1 + ( 1 / n ) ) = ( 1 + ( 1 / k ) ) ) |
| 9 | 8 | fveq2d | |- ( n = k -> ( log ` ( 1 + ( 1 / n ) ) ) = ( log ` ( 1 + ( 1 / k ) ) ) ) |
| 10 | 7 9 | oveq12d | |- ( n = k -> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) = ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) ) |
| 11 | ovex | |- ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) e. _V |
|
| 12 | 10 4 11 | fvmpt | |- ( k e. NN -> ( T ` k ) = ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) ) |
| 13 | 12 | adantl | |- ( ( T. /\ k e. NN ) -> ( T ` k ) = ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) ) |
| 14 | nnrecre | |- ( k e. NN -> ( 1 / k ) e. RR ) |
|
| 15 | 14 | adantl | |- ( ( T. /\ k e. NN ) -> ( 1 / k ) e. RR ) |
| 16 | 1rp | |- 1 e. RR+ |
|
| 17 | nnrp | |- ( k e. NN -> k e. RR+ ) |
|
| 18 | 17 | rpreccld | |- ( k e. NN -> ( 1 / k ) e. RR+ ) |
| 19 | 18 | adantl | |- ( ( T. /\ k e. NN ) -> ( 1 / k ) e. RR+ ) |
| 20 | rpaddcl | |- ( ( 1 e. RR+ /\ ( 1 / k ) e. RR+ ) -> ( 1 + ( 1 / k ) ) e. RR+ ) |
|
| 21 | 16 19 20 | sylancr | |- ( ( T. /\ k e. NN ) -> ( 1 + ( 1 / k ) ) e. RR+ ) |
| 22 | 21 | relogcld | |- ( ( T. /\ k e. NN ) -> ( log ` ( 1 + ( 1 / k ) ) ) e. RR ) |
| 23 | 15 22 | resubcld | |- ( ( T. /\ k e. NN ) -> ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) e. RR ) |
| 24 | 23 | recnd | |- ( ( T. /\ k e. NN ) -> ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) e. CC ) |
| 25 | 1 2 3 4 | emcllem5 | |- G = seq 1 ( + , T ) |
| 26 | 1 2 | emcllem1 | |- ( F : NN --> RR /\ G : NN --> RR ) |
| 27 | 26 | simpri | |- G : NN --> RR |
| 28 | 27 | a1i | |- ( T. -> G : NN --> RR ) |
| 29 | 1 2 | emcllem2 | |- ( k e. NN -> ( ( F ` ( k + 1 ) ) <_ ( F ` k ) /\ ( G ` k ) <_ ( G ` ( k + 1 ) ) ) ) |
| 30 | 29 | simprd | |- ( k e. NN -> ( G ` k ) <_ ( G ` ( k + 1 ) ) ) |
| 31 | 30 | adantl | |- ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( G ` ( k + 1 ) ) ) |
| 32 | 1nn | |- 1 e. NN |
|
| 33 | 26 | simpli | |- F : NN --> RR |
| 34 | 33 | ffvelcdmi | |- ( 1 e. NN -> ( F ` 1 ) e. RR ) |
| 35 | 32 34 | ax-mp | |- ( F ` 1 ) e. RR |
| 36 | 27 | ffvelcdmi | |- ( k e. NN -> ( G ` k ) e. RR ) |
| 37 | 36 | adantl | |- ( ( T. /\ k e. NN ) -> ( G ` k ) e. RR ) |
| 38 | 33 | ffvelcdmi | |- ( k e. NN -> ( F ` k ) e. RR ) |
| 39 | 38 | adantl | |- ( ( T. /\ k e. NN ) -> ( F ` k ) e. RR ) |
| 40 | 35 | a1i | |- ( ( T. /\ k e. NN ) -> ( F ` 1 ) e. RR ) |
| 41 | fvex | |- ( log ` ( 1 + ( 1 / k ) ) ) e. _V |
|
| 42 | 9 3 41 | fvmpt | |- ( k e. NN -> ( H ` k ) = ( log ` ( 1 + ( 1 / k ) ) ) ) |
| 43 | 42 | adantl | |- ( ( T. /\ k e. NN ) -> ( H ` k ) = ( log ` ( 1 + ( 1 / k ) ) ) ) |
| 44 | 1 2 3 | emcllem3 | |- ( k e. NN -> ( H ` k ) = ( ( F ` k ) - ( G ` k ) ) ) |
| 45 | 44 | adantl | |- ( ( T. /\ k e. NN ) -> ( H ` k ) = ( ( F ` k ) - ( G ` k ) ) ) |
| 46 | 43 45 | eqtr3d | |- ( ( T. /\ k e. NN ) -> ( log ` ( 1 + ( 1 / k ) ) ) = ( ( F ` k ) - ( G ` k ) ) ) |
| 47 | 1re | |- 1 e. RR |
|
| 48 | readdcl | |- ( ( 1 e. RR /\ ( 1 / k ) e. RR ) -> ( 1 + ( 1 / k ) ) e. RR ) |
|
| 49 | 47 15 48 | sylancr | |- ( ( T. /\ k e. NN ) -> ( 1 + ( 1 / k ) ) e. RR ) |
| 50 | ltaddrp | |- ( ( 1 e. RR /\ ( 1 / k ) e. RR+ ) -> 1 < ( 1 + ( 1 / k ) ) ) |
|
| 51 | 47 19 50 | sylancr | |- ( ( T. /\ k e. NN ) -> 1 < ( 1 + ( 1 / k ) ) ) |
| 52 | 49 51 | rplogcld | |- ( ( T. /\ k e. NN ) -> ( log ` ( 1 + ( 1 / k ) ) ) e. RR+ ) |
| 53 | 46 52 | eqeltrrd | |- ( ( T. /\ k e. NN ) -> ( ( F ` k ) - ( G ` k ) ) e. RR+ ) |
| 54 | 53 | rpge0d | |- ( ( T. /\ k e. NN ) -> 0 <_ ( ( F ` k ) - ( G ` k ) ) ) |
| 55 | 39 37 | subge0d | |- ( ( T. /\ k e. NN ) -> ( 0 <_ ( ( F ` k ) - ( G ` k ) ) <-> ( G ` k ) <_ ( F ` k ) ) ) |
| 56 | 54 55 | mpbid | |- ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( F ` k ) ) |
| 57 | fveq2 | |- ( x = 1 -> ( F ` x ) = ( F ` 1 ) ) |
|
| 58 | 57 | breq1d | |- ( x = 1 -> ( ( F ` x ) <_ ( F ` 1 ) <-> ( F ` 1 ) <_ ( F ` 1 ) ) ) |
| 59 | fveq2 | |- ( x = k -> ( F ` x ) = ( F ` k ) ) |
|
| 60 | 59 | breq1d | |- ( x = k -> ( ( F ` x ) <_ ( F ` 1 ) <-> ( F ` k ) <_ ( F ` 1 ) ) ) |
| 61 | fveq2 | |- ( x = ( k + 1 ) -> ( F ` x ) = ( F ` ( k + 1 ) ) ) |
|
| 62 | 61 | breq1d | |- ( x = ( k + 1 ) -> ( ( F ` x ) <_ ( F ` 1 ) <-> ( F ` ( k + 1 ) ) <_ ( F ` 1 ) ) ) |
| 63 | 35 | leidi | |- ( F ` 1 ) <_ ( F ` 1 ) |
| 64 | 29 | simpld | |- ( k e. NN -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
| 65 | peano2nn | |- ( k e. NN -> ( k + 1 ) e. NN ) |
|
| 66 | 33 | ffvelcdmi | |- ( ( k + 1 ) e. NN -> ( F ` ( k + 1 ) ) e. RR ) |
| 67 | 65 66 | syl | |- ( k e. NN -> ( F ` ( k + 1 ) ) e. RR ) |
| 68 | 35 | a1i | |- ( k e. NN -> ( F ` 1 ) e. RR ) |
| 69 | letr | |- ( ( ( F ` ( k + 1 ) ) e. RR /\ ( F ` k ) e. RR /\ ( F ` 1 ) e. RR ) -> ( ( ( F ` ( k + 1 ) ) <_ ( F ` k ) /\ ( F ` k ) <_ ( F ` 1 ) ) -> ( F ` ( k + 1 ) ) <_ ( F ` 1 ) ) ) |
|
| 70 | 67 38 68 69 | syl3anc | |- ( k e. NN -> ( ( ( F ` ( k + 1 ) ) <_ ( F ` k ) /\ ( F ` k ) <_ ( F ` 1 ) ) -> ( F ` ( k + 1 ) ) <_ ( F ` 1 ) ) ) |
| 71 | 64 70 | mpand | |- ( k e. NN -> ( ( F ` k ) <_ ( F ` 1 ) -> ( F ` ( k + 1 ) ) <_ ( F ` 1 ) ) ) |
| 72 | 58 60 62 60 63 71 | nnind | |- ( k e. NN -> ( F ` k ) <_ ( F ` 1 ) ) |
| 73 | 72 | adantl | |- ( ( T. /\ k e. NN ) -> ( F ` k ) <_ ( F ` 1 ) ) |
| 74 | 37 39 40 56 73 | letrd | |- ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( F ` 1 ) ) |
| 75 | 74 | ralrimiva | |- ( T. -> A. k e. NN ( G ` k ) <_ ( F ` 1 ) ) |
| 76 | brralrspcev | |- ( ( ( F ` 1 ) e. RR /\ A. k e. NN ( G ` k ) <_ ( F ` 1 ) ) -> E. x e. RR A. k e. NN ( G ` k ) <_ x ) |
|
| 77 | 35 75 76 | sylancr | |- ( T. -> E. x e. RR A. k e. NN ( G ` k ) <_ x ) |
| 78 | 5 6 28 31 77 | climsup | |- ( T. -> G ~~> sup ( ran G , RR , < ) ) |
| 79 | 25 78 | eqbrtrrid | |- ( T. -> seq 1 ( + , T ) ~~> sup ( ran G , RR , < ) ) |
| 80 | climrel | |- Rel ~~> |
|
| 81 | 80 | releldmi | |- ( seq 1 ( + , T ) ~~> sup ( ran G , RR , < ) -> seq 1 ( + , T ) e. dom ~~> ) |
| 82 | 79 81 | syl | |- ( T. -> seq 1 ( + , T ) e. dom ~~> ) |
| 83 | 5 6 13 24 82 | isumclim2 | |- ( T. -> seq 1 ( + , T ) ~~> sum_ k e. NN ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) ) |
| 84 | df-em | |- gamma = sum_ k e. NN ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) |
|
| 85 | 83 25 84 | 3brtr4g | |- ( T. -> G ~~> gamma ) |
| 86 | nnex | |- NN e. _V |
|
| 87 | 86 | mptex | |- ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) e. _V |
| 88 | 1 87 | eqeltri | |- F e. _V |
| 89 | 88 | a1i | |- ( T. -> F e. _V ) |
| 90 | 1 2 3 | emcllem4 | |- H ~~> 0 |
| 91 | 90 | a1i | |- ( T. -> H ~~> 0 ) |
| 92 | 37 | recnd | |- ( ( T. /\ k e. NN ) -> ( G ` k ) e. CC ) |
| 93 | 39 37 | resubcld | |- ( ( T. /\ k e. NN ) -> ( ( F ` k ) - ( G ` k ) ) e. RR ) |
| 94 | 45 93 | eqeltrd | |- ( ( T. /\ k e. NN ) -> ( H ` k ) e. RR ) |
| 95 | 94 | recnd | |- ( ( T. /\ k e. NN ) -> ( H ` k ) e. CC ) |
| 96 | 45 | oveq2d | |- ( ( T. /\ k e. NN ) -> ( ( G ` k ) + ( H ` k ) ) = ( ( G ` k ) + ( ( F ` k ) - ( G ` k ) ) ) ) |
| 97 | 39 | recnd | |- ( ( T. /\ k e. NN ) -> ( F ` k ) e. CC ) |
| 98 | 92 97 | pncan3d | |- ( ( T. /\ k e. NN ) -> ( ( G ` k ) + ( ( F ` k ) - ( G ` k ) ) ) = ( F ` k ) ) |
| 99 | 96 98 | eqtr2d | |- ( ( T. /\ k e. NN ) -> ( F ` k ) = ( ( G ` k ) + ( H ` k ) ) ) |
| 100 | 5 6 85 89 91 92 95 99 | climadd | |- ( T. -> F ~~> ( gamma + 0 ) ) |
| 101 | 85 | mptru | |- G ~~> gamma |
| 102 | climcl | |- ( G ~~> gamma -> gamma e. CC ) |
|
| 103 | 101 102 | ax-mp | |- gamma e. CC |
| 104 | 103 | addridi | |- ( gamma + 0 ) = gamma |
| 105 | 100 104 | breqtrdi | |- ( T. -> F ~~> gamma ) |
| 106 | 105 | mptru | |- F ~~> gamma |
| 107 | 106 101 | pm3.2i | |- ( F ~~> gamma /\ G ~~> gamma ) |