This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for emcl . By the previous lemmas, F and G must approach a common limit, which is gamma by definition. (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | emcl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) | |
| emcl.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) | ||
| emcl.3 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) | ||
| emcl.4 | ⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝑛 ) − ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) ) | ||
| Assertion | emcllem6 | ⊢ ( 𝐹 ⇝ γ ∧ 𝐺 ⇝ γ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | emcl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) | |
| 2 | emcl.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) | |
| 3 | emcl.3 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) | |
| 4 | emcl.4 | ⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝑛 ) − ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) ) | |
| 5 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 6 | 1zzd | ⊢ ( ⊤ → 1 ∈ ℤ ) | |
| 7 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 1 / 𝑛 ) = ( 1 / 𝑘 ) ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 1 + ( 1 / 𝑛 ) ) = ( 1 + ( 1 / 𝑘 ) ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝑛 = 𝑘 → ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) = ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ) |
| 10 | 7 9 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( ( 1 / 𝑛 ) − ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) = ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ) ) |
| 11 | ovex | ⊢ ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ) ∈ V | |
| 12 | 10 4 11 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( 𝑇 ‘ 𝑘 ) = ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ) ) |
| 13 | 12 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ 𝑘 ) = ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ) ) |
| 14 | nnrecre | ⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) | |
| 15 | 14 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ ) |
| 16 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 17 | nnrp | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) | |
| 18 | 17 | rpreccld | ⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ+ ) |
| 19 | 18 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ+ ) |
| 20 | rpaddcl | ⊢ ( ( 1 ∈ ℝ+ ∧ ( 1 / 𝑘 ) ∈ ℝ+ ) → ( 1 + ( 1 / 𝑘 ) ) ∈ ℝ+ ) | |
| 21 | 16 19 20 | sylancr | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 + ( 1 / 𝑘 ) ) ∈ ℝ+ ) |
| 22 | 21 | relogcld | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ∈ ℝ ) |
| 23 | 15 22 | resubcld | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ) ∈ ℝ ) |
| 24 | 23 | recnd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ) ∈ ℂ ) |
| 25 | 1 2 3 4 | emcllem5 | ⊢ 𝐺 = seq 1 ( + , 𝑇 ) |
| 26 | 1 2 | emcllem1 | ⊢ ( 𝐹 : ℕ ⟶ ℝ ∧ 𝐺 : ℕ ⟶ ℝ ) |
| 27 | 26 | simpri | ⊢ 𝐺 : ℕ ⟶ ℝ |
| 28 | 27 | a1i | ⊢ ( ⊤ → 𝐺 : ℕ ⟶ ℝ ) |
| 29 | 1 2 | emcllem2 | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) |
| 30 | 29 | simprd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
| 31 | 30 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
| 32 | 1nn | ⊢ 1 ∈ ℕ | |
| 33 | 26 | simpli | ⊢ 𝐹 : ℕ ⟶ ℝ |
| 34 | 33 | ffvelcdmi | ⊢ ( 1 ∈ ℕ → ( 𝐹 ‘ 1 ) ∈ ℝ ) |
| 35 | 32 34 | ax-mp | ⊢ ( 𝐹 ‘ 1 ) ∈ ℝ |
| 36 | 27 | ffvelcdmi | ⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 37 | 36 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 38 | 33 | ffvelcdmi | ⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 39 | 38 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 40 | 35 | a1i | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 1 ) ∈ ℝ ) |
| 41 | fvex | ⊢ ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ∈ V | |
| 42 | 9 3 41 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( 𝐻 ‘ 𝑘 ) = ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ) |
| 43 | 42 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) = ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ) |
| 44 | 1 2 3 | emcllem3 | ⊢ ( 𝑘 ∈ ℕ → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) |
| 45 | 44 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) |
| 46 | 43 45 | eqtr3d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) |
| 47 | 1re | ⊢ 1 ∈ ℝ | |
| 48 | readdcl | ⊢ ( ( 1 ∈ ℝ ∧ ( 1 / 𝑘 ) ∈ ℝ ) → ( 1 + ( 1 / 𝑘 ) ) ∈ ℝ ) | |
| 49 | 47 15 48 | sylancr | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 + ( 1 / 𝑘 ) ) ∈ ℝ ) |
| 50 | ltaddrp | ⊢ ( ( 1 ∈ ℝ ∧ ( 1 / 𝑘 ) ∈ ℝ+ ) → 1 < ( 1 + ( 1 / 𝑘 ) ) ) | |
| 51 | 47 19 50 | sylancr | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 1 < ( 1 + ( 1 / 𝑘 ) ) ) |
| 52 | 49 51 | rplogcld | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ∈ ℝ+ ) |
| 53 | 46 52 | eqeltrrd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ+ ) |
| 54 | 53 | rpge0d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) |
| 55 | 39 37 | subge0d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
| 56 | 54 55 | mpbid | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 57 | fveq2 | ⊢ ( 𝑥 = 1 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 1 ) ) | |
| 58 | 57 | breq1d | ⊢ ( 𝑥 = 1 → ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 1 ) ↔ ( 𝐹 ‘ 1 ) ≤ ( 𝐹 ‘ 1 ) ) ) |
| 59 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 60 | 59 | breq1d | ⊢ ( 𝑥 = 𝑘 → ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 1 ) ↔ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 1 ) ) ) |
| 61 | fveq2 | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | |
| 62 | 61 | breq1d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 1 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 1 ) ) ) |
| 63 | 35 | leidi | ⊢ ( 𝐹 ‘ 1 ) ≤ ( 𝐹 ‘ 1 ) |
| 64 | 29 | simpld | ⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 65 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 66 | 33 | ffvelcdmi | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 67 | 65 66 | syl | ⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 68 | 35 | a1i | ⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 1 ) ∈ ℝ ) |
| 69 | letr | ⊢ ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 1 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 1 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 1 ) ) ) | |
| 70 | 67 38 68 69 | syl3anc | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 1 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 1 ) ) ) |
| 71 | 64 70 | mpand | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 1 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 1 ) ) ) |
| 72 | 58 60 62 60 63 71 | nnind | ⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 1 ) ) |
| 73 | 72 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 1 ) ) |
| 74 | 37 39 40 56 73 | letrd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 1 ) ) |
| 75 | 74 | ralrimiva | ⊢ ( ⊤ → ∀ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 1 ) ) |
| 76 | brralrspcev | ⊢ ( ( ( 𝐹 ‘ 1 ) ∈ ℝ ∧ ∀ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 1 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) ≤ 𝑥 ) | |
| 77 | 35 75 76 | sylancr | ⊢ ( ⊤ → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) ≤ 𝑥 ) |
| 78 | 5 6 28 31 77 | climsup | ⊢ ( ⊤ → 𝐺 ⇝ sup ( ran 𝐺 , ℝ , < ) ) |
| 79 | 25 78 | eqbrtrrid | ⊢ ( ⊤ → seq 1 ( + , 𝑇 ) ⇝ sup ( ran 𝐺 , ℝ , < ) ) |
| 80 | climrel | ⊢ Rel ⇝ | |
| 81 | 80 | releldmi | ⊢ ( seq 1 ( + , 𝑇 ) ⇝ sup ( ran 𝐺 , ℝ , < ) → seq 1 ( + , 𝑇 ) ∈ dom ⇝ ) |
| 82 | 79 81 | syl | ⊢ ( ⊤ → seq 1 ( + , 𝑇 ) ∈ dom ⇝ ) |
| 83 | 5 6 13 24 82 | isumclim2 | ⊢ ( ⊤ → seq 1 ( + , 𝑇 ) ⇝ Σ 𝑘 ∈ ℕ ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ) ) |
| 84 | df-em | ⊢ γ = Σ 𝑘 ∈ ℕ ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ) | |
| 85 | 83 25 84 | 3brtr4g | ⊢ ( ⊤ → 𝐺 ⇝ γ ) |
| 86 | nnex | ⊢ ℕ ∈ V | |
| 87 | 86 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) ∈ V |
| 88 | 1 87 | eqeltri | ⊢ 𝐹 ∈ V |
| 89 | 88 | a1i | ⊢ ( ⊤ → 𝐹 ∈ V ) |
| 90 | 1 2 3 | emcllem4 | ⊢ 𝐻 ⇝ 0 |
| 91 | 90 | a1i | ⊢ ( ⊤ → 𝐻 ⇝ 0 ) |
| 92 | 37 | recnd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 93 | 39 37 | resubcld | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 94 | 45 93 | eqeltrd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) ∈ ℝ ) |
| 95 | 94 | recnd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) ∈ ℂ ) |
| 96 | 45 | oveq2d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑘 ) + ( 𝐻 ‘ 𝑘 ) ) = ( ( 𝐺 ‘ 𝑘 ) + ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 97 | 39 | recnd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 98 | 92 97 | pncan3d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑘 ) + ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 99 | 96 98 | eqtr2d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑘 ) + ( 𝐻 ‘ 𝑘 ) ) ) |
| 100 | 5 6 85 89 91 92 95 99 | climadd | ⊢ ( ⊤ → 𝐹 ⇝ ( γ + 0 ) ) |
| 101 | 85 | mptru | ⊢ 𝐺 ⇝ γ |
| 102 | climcl | ⊢ ( 𝐺 ⇝ γ → γ ∈ ℂ ) | |
| 103 | 101 102 | ax-mp | ⊢ γ ∈ ℂ |
| 104 | 103 | addridi | ⊢ ( γ + 0 ) = γ |
| 105 | 100 104 | breqtrdi | ⊢ ( ⊤ → 𝐹 ⇝ γ ) |
| 106 | 105 | mptru | ⊢ 𝐹 ⇝ γ |
| 107 | 106 101 | pm3.2i | ⊢ ( 𝐹 ⇝ γ ∧ 𝐺 ⇝ γ ) |