This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for emcl . The difference between series F and G tends to zero. (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | emcl.1 | |- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
|
| emcl.2 | |- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
||
| emcl.3 | |- H = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
||
| Assertion | emcllem4 | |- H ~~> 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | emcl.1 | |- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
|
| 2 | emcl.2 | |- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
|
| 3 | emcl.3 | |- H = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
|
| 4 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 5 | 1zzd | |- ( T. -> 1 e. ZZ ) |
|
| 6 | ax-1cn | |- 1 e. CC |
|
| 7 | divcnv | |- ( 1 e. CC -> ( n e. NN |-> ( 1 / n ) ) ~~> 0 ) |
|
| 8 | 6 7 | mp1i | |- ( T. -> ( n e. NN |-> ( 1 / n ) ) ~~> 0 ) |
| 9 | nnex | |- NN e. _V |
|
| 10 | 9 | mptex | |- ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) e. _V |
| 11 | 3 10 | eqeltri | |- H e. _V |
| 12 | 11 | a1i | |- ( T. -> H e. _V ) |
| 13 | oveq2 | |- ( n = m -> ( 1 / n ) = ( 1 / m ) ) |
|
| 14 | eqid | |- ( n e. NN |-> ( 1 / n ) ) = ( n e. NN |-> ( 1 / n ) ) |
|
| 15 | ovex | |- ( 1 / m ) e. _V |
|
| 16 | 13 14 15 | fvmpt | |- ( m e. NN -> ( ( n e. NN |-> ( 1 / n ) ) ` m ) = ( 1 / m ) ) |
| 17 | 16 | adantl | |- ( ( T. /\ m e. NN ) -> ( ( n e. NN |-> ( 1 / n ) ) ` m ) = ( 1 / m ) ) |
| 18 | nnrecre | |- ( m e. NN -> ( 1 / m ) e. RR ) |
|
| 19 | 18 | adantl | |- ( ( T. /\ m e. NN ) -> ( 1 / m ) e. RR ) |
| 20 | 17 19 | eqeltrd | |- ( ( T. /\ m e. NN ) -> ( ( n e. NN |-> ( 1 / n ) ) ` m ) e. RR ) |
| 21 | 13 | oveq2d | |- ( n = m -> ( 1 + ( 1 / n ) ) = ( 1 + ( 1 / m ) ) ) |
| 22 | 21 | fveq2d | |- ( n = m -> ( log ` ( 1 + ( 1 / n ) ) ) = ( log ` ( 1 + ( 1 / m ) ) ) ) |
| 23 | fvex | |- ( log ` ( 1 + ( 1 / m ) ) ) e. _V |
|
| 24 | 22 3 23 | fvmpt | |- ( m e. NN -> ( H ` m ) = ( log ` ( 1 + ( 1 / m ) ) ) ) |
| 25 | 24 | adantl | |- ( ( T. /\ m e. NN ) -> ( H ` m ) = ( log ` ( 1 + ( 1 / m ) ) ) ) |
| 26 | 1rp | |- 1 e. RR+ |
|
| 27 | nnrp | |- ( m e. NN -> m e. RR+ ) |
|
| 28 | 27 | adantl | |- ( ( T. /\ m e. NN ) -> m e. RR+ ) |
| 29 | 28 | rpreccld | |- ( ( T. /\ m e. NN ) -> ( 1 / m ) e. RR+ ) |
| 30 | rpaddcl | |- ( ( 1 e. RR+ /\ ( 1 / m ) e. RR+ ) -> ( 1 + ( 1 / m ) ) e. RR+ ) |
|
| 31 | 26 29 30 | sylancr | |- ( ( T. /\ m e. NN ) -> ( 1 + ( 1 / m ) ) e. RR+ ) |
| 32 | 31 | rpred | |- ( ( T. /\ m e. NN ) -> ( 1 + ( 1 / m ) ) e. RR ) |
| 33 | 1re | |- 1 e. RR |
|
| 34 | ltaddrp | |- ( ( 1 e. RR /\ ( 1 / m ) e. RR+ ) -> 1 < ( 1 + ( 1 / m ) ) ) |
|
| 35 | 33 29 34 | sylancr | |- ( ( T. /\ m e. NN ) -> 1 < ( 1 + ( 1 / m ) ) ) |
| 36 | 32 35 | rplogcld | |- ( ( T. /\ m e. NN ) -> ( log ` ( 1 + ( 1 / m ) ) ) e. RR+ ) |
| 37 | 25 36 | eqeltrd | |- ( ( T. /\ m e. NN ) -> ( H ` m ) e. RR+ ) |
| 38 | 37 | rpred | |- ( ( T. /\ m e. NN ) -> ( H ` m ) e. RR ) |
| 39 | 31 | relogcld | |- ( ( T. /\ m e. NN ) -> ( log ` ( 1 + ( 1 / m ) ) ) e. RR ) |
| 40 | efgt1p | |- ( ( 1 / m ) e. RR+ -> ( 1 + ( 1 / m ) ) < ( exp ` ( 1 / m ) ) ) |
|
| 41 | 29 40 | syl | |- ( ( T. /\ m e. NN ) -> ( 1 + ( 1 / m ) ) < ( exp ` ( 1 / m ) ) ) |
| 42 | 19 | rpefcld | |- ( ( T. /\ m e. NN ) -> ( exp ` ( 1 / m ) ) e. RR+ ) |
| 43 | logltb | |- ( ( ( 1 + ( 1 / m ) ) e. RR+ /\ ( exp ` ( 1 / m ) ) e. RR+ ) -> ( ( 1 + ( 1 / m ) ) < ( exp ` ( 1 / m ) ) <-> ( log ` ( 1 + ( 1 / m ) ) ) < ( log ` ( exp ` ( 1 / m ) ) ) ) ) |
|
| 44 | 31 42 43 | syl2anc | |- ( ( T. /\ m e. NN ) -> ( ( 1 + ( 1 / m ) ) < ( exp ` ( 1 / m ) ) <-> ( log ` ( 1 + ( 1 / m ) ) ) < ( log ` ( exp ` ( 1 / m ) ) ) ) ) |
| 45 | 41 44 | mpbid | |- ( ( T. /\ m e. NN ) -> ( log ` ( 1 + ( 1 / m ) ) ) < ( log ` ( exp ` ( 1 / m ) ) ) ) |
| 46 | 19 | relogefd | |- ( ( T. /\ m e. NN ) -> ( log ` ( exp ` ( 1 / m ) ) ) = ( 1 / m ) ) |
| 47 | 45 46 | breqtrd | |- ( ( T. /\ m e. NN ) -> ( log ` ( 1 + ( 1 / m ) ) ) < ( 1 / m ) ) |
| 48 | 39 19 47 | ltled | |- ( ( T. /\ m e. NN ) -> ( log ` ( 1 + ( 1 / m ) ) ) <_ ( 1 / m ) ) |
| 49 | 48 25 17 | 3brtr4d | |- ( ( T. /\ m e. NN ) -> ( H ` m ) <_ ( ( n e. NN |-> ( 1 / n ) ) ` m ) ) |
| 50 | 37 | rpge0d | |- ( ( T. /\ m e. NN ) -> 0 <_ ( H ` m ) ) |
| 51 | 4 5 8 12 20 38 49 50 | climsqz2 | |- ( T. -> H ~~> 0 ) |
| 52 | 51 | mptru | |- H ~~> 0 |