This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for emcl . The function H is the difference between F and G . (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | emcl.1 | |- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
|
| emcl.2 | |- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
||
| emcl.3 | |- H = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
||
| Assertion | emcllem3 | |- ( N e. NN -> ( H ` N ) = ( ( F ` N ) - ( G ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | emcl.1 | |- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
|
| 2 | emcl.2 | |- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
|
| 3 | emcl.3 | |- H = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
|
| 4 | peano2nn | |- ( N e. NN -> ( N + 1 ) e. NN ) |
|
| 5 | 4 | nnrpd | |- ( N e. NN -> ( N + 1 ) e. RR+ ) |
| 6 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 7 | 5 6 | relogdivd | |- ( N e. NN -> ( log ` ( ( N + 1 ) / N ) ) = ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) |
| 8 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 9 | 1cnd | |- ( N e. NN -> 1 e. CC ) |
|
| 10 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 11 | 8 9 8 10 | divdird | |- ( N e. NN -> ( ( N + 1 ) / N ) = ( ( N / N ) + ( 1 / N ) ) ) |
| 12 | 8 10 | dividd | |- ( N e. NN -> ( N / N ) = 1 ) |
| 13 | 12 | oveq1d | |- ( N e. NN -> ( ( N / N ) + ( 1 / N ) ) = ( 1 + ( 1 / N ) ) ) |
| 14 | 11 13 | eqtr2d | |- ( N e. NN -> ( 1 + ( 1 / N ) ) = ( ( N + 1 ) / N ) ) |
| 15 | 14 | fveq2d | |- ( N e. NN -> ( log ` ( 1 + ( 1 / N ) ) ) = ( log ` ( ( N + 1 ) / N ) ) ) |
| 16 | fzfid | |- ( N e. NN -> ( 1 ... N ) e. Fin ) |
|
| 17 | elfznn | |- ( m e. ( 1 ... N ) -> m e. NN ) |
|
| 18 | 17 | adantl | |- ( ( N e. NN /\ m e. ( 1 ... N ) ) -> m e. NN ) |
| 19 | 18 | nnrecred | |- ( ( N e. NN /\ m e. ( 1 ... N ) ) -> ( 1 / m ) e. RR ) |
| 20 | 16 19 | fsumrecl | |- ( N e. NN -> sum_ m e. ( 1 ... N ) ( 1 / m ) e. RR ) |
| 21 | 20 | recnd | |- ( N e. NN -> sum_ m e. ( 1 ... N ) ( 1 / m ) e. CC ) |
| 22 | 6 | relogcld | |- ( N e. NN -> ( log ` N ) e. RR ) |
| 23 | 22 | recnd | |- ( N e. NN -> ( log ` N ) e. CC ) |
| 24 | 5 | relogcld | |- ( N e. NN -> ( log ` ( N + 1 ) ) e. RR ) |
| 25 | 24 | recnd | |- ( N e. NN -> ( log ` ( N + 1 ) ) e. CC ) |
| 26 | 21 23 25 | nnncan1d | |- ( N e. NN -> ( ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) - ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) = ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) |
| 27 | 7 15 26 | 3eqtr4d | |- ( N e. NN -> ( log ` ( 1 + ( 1 / N ) ) ) = ( ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) - ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) ) |
| 28 | oveq2 | |- ( n = N -> ( 1 / n ) = ( 1 / N ) ) |
|
| 29 | 28 | oveq2d | |- ( n = N -> ( 1 + ( 1 / n ) ) = ( 1 + ( 1 / N ) ) ) |
| 30 | 29 | fveq2d | |- ( n = N -> ( log ` ( 1 + ( 1 / n ) ) ) = ( log ` ( 1 + ( 1 / N ) ) ) ) |
| 31 | fvex | |- ( log ` ( 1 + ( 1 / N ) ) ) e. _V |
|
| 32 | 30 3 31 | fvmpt | |- ( N e. NN -> ( H ` N ) = ( log ` ( 1 + ( 1 / N ) ) ) ) |
| 33 | oveq2 | |- ( n = N -> ( 1 ... n ) = ( 1 ... N ) ) |
|
| 34 | 33 | sumeq1d | |- ( n = N -> sum_ m e. ( 1 ... n ) ( 1 / m ) = sum_ m e. ( 1 ... N ) ( 1 / m ) ) |
| 35 | fveq2 | |- ( n = N -> ( log ` n ) = ( log ` N ) ) |
|
| 36 | 34 35 | oveq12d | |- ( n = N -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) ) |
| 37 | ovex | |- ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) e. _V |
|
| 38 | 36 1 37 | fvmpt | |- ( N e. NN -> ( F ` N ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) ) |
| 39 | fvoveq1 | |- ( n = N -> ( log ` ( n + 1 ) ) = ( log ` ( N + 1 ) ) ) |
|
| 40 | 34 39 | oveq12d | |- ( n = N -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) |
| 41 | ovex | |- ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. _V |
|
| 42 | 40 2 41 | fvmpt | |- ( N e. NN -> ( G ` N ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) |
| 43 | 38 42 | oveq12d | |- ( N e. NN -> ( ( F ` N ) - ( G ` N ) ) = ( ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) - ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) ) |
| 44 | 27 32 43 | 3eqtr4d | |- ( N e. NN -> ( H ` N ) = ( ( F ` N ) - ( G ` N ) ) ) |