This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for emcl . The series F and G are sequences of real numbers that approach gamma from above and below, respectively. (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | emcl.1 | |- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
|
| emcl.2 | |- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
||
| Assertion | emcllem1 | |- ( F : NN --> RR /\ G : NN --> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | emcl.1 | |- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
|
| 2 | emcl.2 | |- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
|
| 3 | fzfid | |- ( n e. NN -> ( 1 ... n ) e. Fin ) |
|
| 4 | elfznn | |- ( m e. ( 1 ... n ) -> m e. NN ) |
|
| 5 | 4 | adantl | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> m e. NN ) |
| 6 | 5 | nnrecred | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( 1 / m ) e. RR ) |
| 7 | 3 6 | fsumrecl | |- ( n e. NN -> sum_ m e. ( 1 ... n ) ( 1 / m ) e. RR ) |
| 8 | nnrp | |- ( n e. NN -> n e. RR+ ) |
|
| 9 | 8 | relogcld | |- ( n e. NN -> ( log ` n ) e. RR ) |
| 10 | 7 9 | resubcld | |- ( n e. NN -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) e. RR ) |
| 11 | 1 10 | fmpti | |- F : NN --> RR |
| 12 | peano2nn | |- ( n e. NN -> ( n + 1 ) e. NN ) |
|
| 13 | 12 | nnrpd | |- ( n e. NN -> ( n + 1 ) e. RR+ ) |
| 14 | 13 | relogcld | |- ( n e. NN -> ( log ` ( n + 1 ) ) e. RR ) |
| 15 | 7 14 | resubcld | |- ( n e. NN -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) e. RR ) |
| 16 | 2 15 | fmpti | |- G : NN --> RR |
| 17 | 11 16 | pm3.2i | |- ( F : NN --> RR /\ G : NN --> RR ) |