This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for emcl . F is increasing, and G is decreasing. (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | emcl.1 | |- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
|
| emcl.2 | |- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
||
| Assertion | emcllem2 | |- ( N e. NN -> ( ( F ` ( N + 1 ) ) <_ ( F ` N ) /\ ( G ` N ) <_ ( G ` ( N + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | emcl.1 | |- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
|
| 2 | emcl.2 | |- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
|
| 3 | peano2nn | |- ( N e. NN -> ( N + 1 ) e. NN ) |
|
| 4 | 3 | nnrecred | |- ( N e. NN -> ( 1 / ( N + 1 ) ) e. RR ) |
| 5 | 3 | nnrpd | |- ( N e. NN -> ( N + 1 ) e. RR+ ) |
| 6 | 5 | relogcld | |- ( N e. NN -> ( log ` ( N + 1 ) ) e. RR ) |
| 7 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 8 | 7 | relogcld | |- ( N e. NN -> ( log ` N ) e. RR ) |
| 9 | 6 8 | resubcld | |- ( N e. NN -> ( ( log ` ( N + 1 ) ) - ( log ` N ) ) e. RR ) |
| 10 | fzfid | |- ( N e. NN -> ( 1 ... N ) e. Fin ) |
|
| 11 | elfznn | |- ( m e. ( 1 ... N ) -> m e. NN ) |
|
| 12 | 11 | adantl | |- ( ( N e. NN /\ m e. ( 1 ... N ) ) -> m e. NN ) |
| 13 | 12 | nnrecred | |- ( ( N e. NN /\ m e. ( 1 ... N ) ) -> ( 1 / m ) e. RR ) |
| 14 | 10 13 | fsumrecl | |- ( N e. NN -> sum_ m e. ( 1 ... N ) ( 1 / m ) e. RR ) |
| 15 | 5 | rpreccld | |- ( N e. NN -> ( 1 / ( N + 1 ) ) e. RR+ ) |
| 16 | 15 | rpge0d | |- ( N e. NN -> 0 <_ ( 1 / ( N + 1 ) ) ) |
| 17 | 1div1e1 | |- ( 1 / 1 ) = 1 |
|
| 18 | 1re | |- 1 e. RR |
|
| 19 | ltaddrp | |- ( ( 1 e. RR /\ N e. RR+ ) -> 1 < ( 1 + N ) ) |
|
| 20 | 18 7 19 | sylancr | |- ( N e. NN -> 1 < ( 1 + N ) ) |
| 21 | ax-1cn | |- 1 e. CC |
|
| 22 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 23 | addcom | |- ( ( 1 e. CC /\ N e. CC ) -> ( 1 + N ) = ( N + 1 ) ) |
|
| 24 | 21 22 23 | sylancr | |- ( N e. NN -> ( 1 + N ) = ( N + 1 ) ) |
| 25 | 20 24 | breqtrd | |- ( N e. NN -> 1 < ( N + 1 ) ) |
| 26 | 17 25 | eqbrtrid | |- ( N e. NN -> ( 1 / 1 ) < ( N + 1 ) ) |
| 27 | 3 | nnred | |- ( N e. NN -> ( N + 1 ) e. RR ) |
| 28 | 3 | nngt0d | |- ( N e. NN -> 0 < ( N + 1 ) ) |
| 29 | 0lt1 | |- 0 < 1 |
|
| 30 | ltrec1 | |- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( ( N + 1 ) e. RR /\ 0 < ( N + 1 ) ) ) -> ( ( 1 / 1 ) < ( N + 1 ) <-> ( 1 / ( N + 1 ) ) < 1 ) ) |
|
| 31 | 18 29 30 | mpanl12 | |- ( ( ( N + 1 ) e. RR /\ 0 < ( N + 1 ) ) -> ( ( 1 / 1 ) < ( N + 1 ) <-> ( 1 / ( N + 1 ) ) < 1 ) ) |
| 32 | 27 28 31 | syl2anc | |- ( N e. NN -> ( ( 1 / 1 ) < ( N + 1 ) <-> ( 1 / ( N + 1 ) ) < 1 ) ) |
| 33 | 26 32 | mpbid | |- ( N e. NN -> ( 1 / ( N + 1 ) ) < 1 ) |
| 34 | 4 16 33 | eflegeo | |- ( N e. NN -> ( exp ` ( 1 / ( N + 1 ) ) ) <_ ( 1 / ( 1 - ( 1 / ( N + 1 ) ) ) ) ) |
| 35 | 27 | recnd | |- ( N e. NN -> ( N + 1 ) e. CC ) |
| 36 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 37 | 3 | nnne0d | |- ( N e. NN -> ( N + 1 ) =/= 0 ) |
| 38 | 22 35 36 37 | recdivd | |- ( N e. NN -> ( 1 / ( N / ( N + 1 ) ) ) = ( ( N + 1 ) / N ) ) |
| 39 | 1cnd | |- ( N e. NN -> 1 e. CC ) |
|
| 40 | 35 39 35 37 | divsubdird | |- ( N e. NN -> ( ( ( N + 1 ) - 1 ) / ( N + 1 ) ) = ( ( ( N + 1 ) / ( N + 1 ) ) - ( 1 / ( N + 1 ) ) ) ) |
| 41 | pncan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
|
| 42 | 22 21 41 | sylancl | |- ( N e. NN -> ( ( N + 1 ) - 1 ) = N ) |
| 43 | 42 | oveq1d | |- ( N e. NN -> ( ( ( N + 1 ) - 1 ) / ( N + 1 ) ) = ( N / ( N + 1 ) ) ) |
| 44 | 35 37 | dividd | |- ( N e. NN -> ( ( N + 1 ) / ( N + 1 ) ) = 1 ) |
| 45 | 44 | oveq1d | |- ( N e. NN -> ( ( ( N + 1 ) / ( N + 1 ) ) - ( 1 / ( N + 1 ) ) ) = ( 1 - ( 1 / ( N + 1 ) ) ) ) |
| 46 | 40 43 45 | 3eqtr3rd | |- ( N e. NN -> ( 1 - ( 1 / ( N + 1 ) ) ) = ( N / ( N + 1 ) ) ) |
| 47 | 46 | oveq2d | |- ( N e. NN -> ( 1 / ( 1 - ( 1 / ( N + 1 ) ) ) ) = ( 1 / ( N / ( N + 1 ) ) ) ) |
| 48 | 5 7 | rpdivcld | |- ( N e. NN -> ( ( N + 1 ) / N ) e. RR+ ) |
| 49 | 48 | reeflogd | |- ( N e. NN -> ( exp ` ( log ` ( ( N + 1 ) / N ) ) ) = ( ( N + 1 ) / N ) ) |
| 50 | 38 47 49 | 3eqtr4d | |- ( N e. NN -> ( 1 / ( 1 - ( 1 / ( N + 1 ) ) ) ) = ( exp ` ( log ` ( ( N + 1 ) / N ) ) ) ) |
| 51 | 34 50 | breqtrd | |- ( N e. NN -> ( exp ` ( 1 / ( N + 1 ) ) ) <_ ( exp ` ( log ` ( ( N + 1 ) / N ) ) ) ) |
| 52 | 5 7 | relogdivd | |- ( N e. NN -> ( log ` ( ( N + 1 ) / N ) ) = ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) |
| 53 | 52 9 | eqeltrd | |- ( N e. NN -> ( log ` ( ( N + 1 ) / N ) ) e. RR ) |
| 54 | efle | |- ( ( ( 1 / ( N + 1 ) ) e. RR /\ ( log ` ( ( N + 1 ) / N ) ) e. RR ) -> ( ( 1 / ( N + 1 ) ) <_ ( log ` ( ( N + 1 ) / N ) ) <-> ( exp ` ( 1 / ( N + 1 ) ) ) <_ ( exp ` ( log ` ( ( N + 1 ) / N ) ) ) ) ) |
|
| 55 | 4 53 54 | syl2anc | |- ( N e. NN -> ( ( 1 / ( N + 1 ) ) <_ ( log ` ( ( N + 1 ) / N ) ) <-> ( exp ` ( 1 / ( N + 1 ) ) ) <_ ( exp ` ( log ` ( ( N + 1 ) / N ) ) ) ) ) |
| 56 | 51 55 | mpbird | |- ( N e. NN -> ( 1 / ( N + 1 ) ) <_ ( log ` ( ( N + 1 ) / N ) ) ) |
| 57 | 56 52 | breqtrd | |- ( N e. NN -> ( 1 / ( N + 1 ) ) <_ ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) |
| 58 | 4 9 14 57 | leadd2dd | |- ( N e. NN -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) + ( 1 / ( N + 1 ) ) ) <_ ( sum_ m e. ( 1 ... N ) ( 1 / m ) + ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) ) |
| 59 | id | |- ( N e. NN -> N e. NN ) |
|
| 60 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 61 | 59 60 | eleqtrdi | |- ( N e. NN -> N e. ( ZZ>= ` 1 ) ) |
| 62 | elfznn | |- ( m e. ( 1 ... ( N + 1 ) ) -> m e. NN ) |
|
| 63 | 62 | adantl | |- ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) -> m e. NN ) |
| 64 | 63 | nnrecred | |- ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) -> ( 1 / m ) e. RR ) |
| 65 | 64 | recnd | |- ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) -> ( 1 / m ) e. CC ) |
| 66 | oveq2 | |- ( m = ( N + 1 ) -> ( 1 / m ) = ( 1 / ( N + 1 ) ) ) |
|
| 67 | 61 65 66 | fsump1 | |- ( N e. NN -> sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) + ( 1 / ( N + 1 ) ) ) ) |
| 68 | 6 | recnd | |- ( N e. NN -> ( log ` ( N + 1 ) ) e. CC ) |
| 69 | 14 | recnd | |- ( N e. NN -> sum_ m e. ( 1 ... N ) ( 1 / m ) e. CC ) |
| 70 | 8 | recnd | |- ( N e. NN -> ( log ` N ) e. CC ) |
| 71 | 68 69 70 | addsub12d | |- ( N e. NN -> ( ( log ` ( N + 1 ) ) + ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) + ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) ) |
| 72 | 58 67 71 | 3brtr4d | |- ( N e. NN -> sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) <_ ( ( log ` ( N + 1 ) ) + ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) ) ) |
| 73 | fzfid | |- ( N e. NN -> ( 1 ... ( N + 1 ) ) e. Fin ) |
|
| 74 | 73 64 | fsumrecl | |- ( N e. NN -> sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) e. RR ) |
| 75 | 14 8 | resubcld | |- ( N e. NN -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) e. RR ) |
| 76 | 74 6 75 | lesubadd2d | |- ( N e. NN -> ( ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) <_ ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) <-> sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) <_ ( ( log ` ( N + 1 ) ) + ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) ) ) ) |
| 77 | 72 76 | mpbird | |- ( N e. NN -> ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) <_ ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) ) |
| 78 | oveq2 | |- ( n = ( N + 1 ) -> ( 1 ... n ) = ( 1 ... ( N + 1 ) ) ) |
|
| 79 | 78 | sumeq1d | |- ( n = ( N + 1 ) -> sum_ m e. ( 1 ... n ) ( 1 / m ) = sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) ) |
| 80 | fveq2 | |- ( n = ( N + 1 ) -> ( log ` n ) = ( log ` ( N + 1 ) ) ) |
|
| 81 | 79 80 | oveq12d | |- ( n = ( N + 1 ) -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) = ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) |
| 82 | ovex | |- ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. _V |
|
| 83 | 81 1 82 | fvmpt | |- ( ( N + 1 ) e. NN -> ( F ` ( N + 1 ) ) = ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) |
| 84 | 3 83 | syl | |- ( N e. NN -> ( F ` ( N + 1 ) ) = ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) |
| 85 | oveq2 | |- ( n = N -> ( 1 ... n ) = ( 1 ... N ) ) |
|
| 86 | 85 | sumeq1d | |- ( n = N -> sum_ m e. ( 1 ... n ) ( 1 / m ) = sum_ m e. ( 1 ... N ) ( 1 / m ) ) |
| 87 | fveq2 | |- ( n = N -> ( log ` n ) = ( log ` N ) ) |
|
| 88 | 86 87 | oveq12d | |- ( n = N -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) ) |
| 89 | ovex | |- ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) e. _V |
|
| 90 | 88 1 89 | fvmpt | |- ( N e. NN -> ( F ` N ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) ) |
| 91 | 77 84 90 | 3brtr4d | |- ( N e. NN -> ( F ` ( N + 1 ) ) <_ ( F ` N ) ) |
| 92 | peano2nn | |- ( ( N + 1 ) e. NN -> ( ( N + 1 ) + 1 ) e. NN ) |
|
| 93 | 3 92 | syl | |- ( N e. NN -> ( ( N + 1 ) + 1 ) e. NN ) |
| 94 | 93 | nnrpd | |- ( N e. NN -> ( ( N + 1 ) + 1 ) e. RR+ ) |
| 95 | 94 | relogcld | |- ( N e. NN -> ( log ` ( ( N + 1 ) + 1 ) ) e. RR ) |
| 96 | 95 6 | resubcld | |- ( N e. NN -> ( ( log ` ( ( N + 1 ) + 1 ) ) - ( log ` ( N + 1 ) ) ) e. RR ) |
| 97 | logdifbnd | |- ( ( N + 1 ) e. RR+ -> ( ( log ` ( ( N + 1 ) + 1 ) ) - ( log ` ( N + 1 ) ) ) <_ ( 1 / ( N + 1 ) ) ) |
|
| 98 | 5 97 | syl | |- ( N e. NN -> ( ( log ` ( ( N + 1 ) + 1 ) ) - ( log ` ( N + 1 ) ) ) <_ ( 1 / ( N + 1 ) ) ) |
| 99 | 96 4 14 98 | leadd2dd | |- ( N e. NN -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) + ( ( log ` ( ( N + 1 ) + 1 ) ) - ( log ` ( N + 1 ) ) ) ) <_ ( sum_ m e. ( 1 ... N ) ( 1 / m ) + ( 1 / ( N + 1 ) ) ) ) |
| 100 | 95 | recnd | |- ( N e. NN -> ( log ` ( ( N + 1 ) + 1 ) ) e. CC ) |
| 101 | 69 68 100 | subadd23d | |- ( N e. NN -> ( ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) + ( log ` ( ( N + 1 ) + 1 ) ) ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) + ( ( log ` ( ( N + 1 ) + 1 ) ) - ( log ` ( N + 1 ) ) ) ) ) |
| 102 | 99 101 67 | 3brtr4d | |- ( N e. NN -> ( ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) + ( log ` ( ( N + 1 ) + 1 ) ) ) <_ sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) ) |
| 103 | 14 6 | resubcld | |- ( N e. NN -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. RR ) |
| 104 | leaddsub | |- ( ( ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. RR /\ ( log ` ( ( N + 1 ) + 1 ) ) e. RR /\ sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) e. RR ) -> ( ( ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) + ( log ` ( ( N + 1 ) + 1 ) ) ) <_ sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) <-> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) <_ ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( ( N + 1 ) + 1 ) ) ) ) ) |
|
| 105 | 103 95 74 104 | syl3anc | |- ( N e. NN -> ( ( ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) + ( log ` ( ( N + 1 ) + 1 ) ) ) <_ sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) <-> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) <_ ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( ( N + 1 ) + 1 ) ) ) ) ) |
| 106 | 102 105 | mpbid | |- ( N e. NN -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) <_ ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( ( N + 1 ) + 1 ) ) ) ) |
| 107 | fvoveq1 | |- ( n = N -> ( log ` ( n + 1 ) ) = ( log ` ( N + 1 ) ) ) |
|
| 108 | 86 107 | oveq12d | |- ( n = N -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) |
| 109 | ovex | |- ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. _V |
|
| 110 | 108 2 109 | fvmpt | |- ( N e. NN -> ( G ` N ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) |
| 111 | fvoveq1 | |- ( n = ( N + 1 ) -> ( log ` ( n + 1 ) ) = ( log ` ( ( N + 1 ) + 1 ) ) ) |
|
| 112 | 79 111 | oveq12d | |- ( n = ( N + 1 ) -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) = ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( ( N + 1 ) + 1 ) ) ) ) |
| 113 | ovex | |- ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( ( N + 1 ) + 1 ) ) ) e. _V |
|
| 114 | 112 2 113 | fvmpt | |- ( ( N + 1 ) e. NN -> ( G ` ( N + 1 ) ) = ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( ( N + 1 ) + 1 ) ) ) ) |
| 115 | 3 114 | syl | |- ( N e. NN -> ( G ` ( N + 1 ) ) = ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( ( N + 1 ) + 1 ) ) ) ) |
| 116 | 106 110 115 | 3brtr4d | |- ( N e. NN -> ( G ` N ) <_ ( G ` ( N + 1 ) ) ) |
| 117 | 91 116 | jca | |- ( N e. NN -> ( ( F ` ( N + 1 ) ) <_ ( F ` N ) /\ ( G ` N ) <_ ( G ` ( N + 1 ) ) ) ) |