This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for emcl and harmonicbnd . Derive bounds on gamma as F ( 1 ) and G ( 1 ) . (Contributed by Mario Carneiro, 11-Jul-2014) (Revised by Mario Carneiro, 9-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | emcl.1 | |- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
|
| emcl.2 | |- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
||
| emcl.3 | |- H = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
||
| emcl.4 | |- T = ( n e. NN |-> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) ) |
||
| Assertion | emcllem7 | |- ( gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) /\ F : NN --> ( gamma [,] 1 ) /\ G : NN --> ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | emcl.1 | |- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
|
| 2 | emcl.2 | |- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
|
| 3 | emcl.3 | |- H = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
|
| 4 | emcl.4 | |- T = ( n e. NN |-> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) ) |
|
| 5 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 6 | 1zzd | |- ( T. -> 1 e. ZZ ) |
|
| 7 | 1 2 3 4 | emcllem6 | |- ( F ~~> gamma /\ G ~~> gamma ) |
| 8 | 7 | simpri | |- G ~~> gamma |
| 9 | 8 | a1i | |- ( T. -> G ~~> gamma ) |
| 10 | 1 2 | emcllem1 | |- ( F : NN --> RR /\ G : NN --> RR ) |
| 11 | 10 | simpri | |- G : NN --> RR |
| 12 | 11 | ffvelcdmi | |- ( k e. NN -> ( G ` k ) e. RR ) |
| 13 | 12 | adantl | |- ( ( T. /\ k e. NN ) -> ( G ` k ) e. RR ) |
| 14 | 5 6 9 13 | climrecl | |- ( T. -> gamma e. RR ) |
| 15 | 1nn | |- 1 e. NN |
|
| 16 | simpr | |- ( ( T. /\ i e. NN ) -> i e. NN ) |
|
| 17 | 8 | a1i | |- ( ( T. /\ i e. NN ) -> G ~~> gamma ) |
| 18 | 12 | adantl | |- ( ( ( T. /\ i e. NN ) /\ k e. NN ) -> ( G ` k ) e. RR ) |
| 19 | 1 2 | emcllem2 | |- ( k e. NN -> ( ( F ` ( k + 1 ) ) <_ ( F ` k ) /\ ( G ` k ) <_ ( G ` ( k + 1 ) ) ) ) |
| 20 | 19 | simprd | |- ( k e. NN -> ( G ` k ) <_ ( G ` ( k + 1 ) ) ) |
| 21 | 20 | adantl | |- ( ( ( T. /\ i e. NN ) /\ k e. NN ) -> ( G ` k ) <_ ( G ` ( k + 1 ) ) ) |
| 22 | 5 16 17 18 21 | climub | |- ( ( T. /\ i e. NN ) -> ( G ` i ) <_ gamma ) |
| 23 | 22 | ralrimiva | |- ( T. -> A. i e. NN ( G ` i ) <_ gamma ) |
| 24 | fveq2 | |- ( i = 1 -> ( G ` i ) = ( G ` 1 ) ) |
|
| 25 | oveq2 | |- ( n = 1 -> ( 1 ... n ) = ( 1 ... 1 ) ) |
|
| 26 | 25 | sumeq1d | |- ( n = 1 -> sum_ m e. ( 1 ... n ) ( 1 / m ) = sum_ m e. ( 1 ... 1 ) ( 1 / m ) ) |
| 27 | 1z | |- 1 e. ZZ |
|
| 28 | ax-1cn | |- 1 e. CC |
|
| 29 | oveq2 | |- ( m = 1 -> ( 1 / m ) = ( 1 / 1 ) ) |
|
| 30 | 1div1e1 | |- ( 1 / 1 ) = 1 |
|
| 31 | 29 30 | eqtrdi | |- ( m = 1 -> ( 1 / m ) = 1 ) |
| 32 | 31 | fsum1 | |- ( ( 1 e. ZZ /\ 1 e. CC ) -> sum_ m e. ( 1 ... 1 ) ( 1 / m ) = 1 ) |
| 33 | 27 28 32 | mp2an | |- sum_ m e. ( 1 ... 1 ) ( 1 / m ) = 1 |
| 34 | 26 33 | eqtrdi | |- ( n = 1 -> sum_ m e. ( 1 ... n ) ( 1 / m ) = 1 ) |
| 35 | oveq1 | |- ( n = 1 -> ( n + 1 ) = ( 1 + 1 ) ) |
|
| 36 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 37 | 35 36 | eqtr4di | |- ( n = 1 -> ( n + 1 ) = 2 ) |
| 38 | 37 | fveq2d | |- ( n = 1 -> ( log ` ( n + 1 ) ) = ( log ` 2 ) ) |
| 39 | 34 38 | oveq12d | |- ( n = 1 -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) = ( 1 - ( log ` 2 ) ) ) |
| 40 | 1re | |- 1 e. RR |
|
| 41 | 2rp | |- 2 e. RR+ |
|
| 42 | relogcl | |- ( 2 e. RR+ -> ( log ` 2 ) e. RR ) |
|
| 43 | 41 42 | ax-mp | |- ( log ` 2 ) e. RR |
| 44 | 40 43 | resubcli | |- ( 1 - ( log ` 2 ) ) e. RR |
| 45 | 44 | elexi | |- ( 1 - ( log ` 2 ) ) e. _V |
| 46 | 39 2 45 | fvmpt | |- ( 1 e. NN -> ( G ` 1 ) = ( 1 - ( log ` 2 ) ) ) |
| 47 | 15 46 | ax-mp | |- ( G ` 1 ) = ( 1 - ( log ` 2 ) ) |
| 48 | 24 47 | eqtrdi | |- ( i = 1 -> ( G ` i ) = ( 1 - ( log ` 2 ) ) ) |
| 49 | 48 | breq1d | |- ( i = 1 -> ( ( G ` i ) <_ gamma <-> ( 1 - ( log ` 2 ) ) <_ gamma ) ) |
| 50 | 49 | rspcva | |- ( ( 1 e. NN /\ A. i e. NN ( G ` i ) <_ gamma ) -> ( 1 - ( log ` 2 ) ) <_ gamma ) |
| 51 | 15 23 50 | sylancr | |- ( T. -> ( 1 - ( log ` 2 ) ) <_ gamma ) |
| 52 | fveq2 | |- ( x = i -> ( F ` x ) = ( F ` i ) ) |
|
| 53 | 52 | negeqd | |- ( x = i -> -u ( F ` x ) = -u ( F ` i ) ) |
| 54 | eqid | |- ( x e. NN |-> -u ( F ` x ) ) = ( x e. NN |-> -u ( F ` x ) ) |
|
| 55 | negex | |- -u ( F ` i ) e. _V |
|
| 56 | 53 54 55 | fvmpt | |- ( i e. NN -> ( ( x e. NN |-> -u ( F ` x ) ) ` i ) = -u ( F ` i ) ) |
| 57 | 56 | adantl | |- ( ( T. /\ i e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` i ) = -u ( F ` i ) ) |
| 58 | 7 | simpli | |- F ~~> gamma |
| 59 | 58 | a1i | |- ( T. -> F ~~> gamma ) |
| 60 | 0cnd | |- ( T. -> 0 e. CC ) |
|
| 61 | nnex | |- NN e. _V |
|
| 62 | 61 | mptex | |- ( x e. NN |-> -u ( F ` x ) ) e. _V |
| 63 | 62 | a1i | |- ( T. -> ( x e. NN |-> -u ( F ` x ) ) e. _V ) |
| 64 | 10 | simpli | |- F : NN --> RR |
| 65 | 64 | ffvelcdmi | |- ( k e. NN -> ( F ` k ) e. RR ) |
| 66 | 65 | adantl | |- ( ( T. /\ k e. NN ) -> ( F ` k ) e. RR ) |
| 67 | 66 | recnd | |- ( ( T. /\ k e. NN ) -> ( F ` k ) e. CC ) |
| 68 | fveq2 | |- ( x = k -> ( F ` x ) = ( F ` k ) ) |
|
| 69 | 68 | negeqd | |- ( x = k -> -u ( F ` x ) = -u ( F ` k ) ) |
| 70 | negex | |- -u ( F ` k ) e. _V |
|
| 71 | 69 54 70 | fvmpt | |- ( k e. NN -> ( ( x e. NN |-> -u ( F ` x ) ) ` k ) = -u ( F ` k ) ) |
| 72 | 71 | adantl | |- ( ( T. /\ k e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` k ) = -u ( F ` k ) ) |
| 73 | df-neg | |- -u ( F ` k ) = ( 0 - ( F ` k ) ) |
|
| 74 | 72 73 | eqtrdi | |- ( ( T. /\ k e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` k ) = ( 0 - ( F ` k ) ) ) |
| 75 | 5 6 59 60 63 67 74 | climsubc2 | |- ( T. -> ( x e. NN |-> -u ( F ` x ) ) ~~> ( 0 - gamma ) ) |
| 76 | 75 | adantr | |- ( ( T. /\ i e. NN ) -> ( x e. NN |-> -u ( F ` x ) ) ~~> ( 0 - gamma ) ) |
| 77 | 66 | renegcld | |- ( ( T. /\ k e. NN ) -> -u ( F ` k ) e. RR ) |
| 78 | 72 77 | eqeltrd | |- ( ( T. /\ k e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` k ) e. RR ) |
| 79 | 78 | adantlr | |- ( ( ( T. /\ i e. NN ) /\ k e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` k ) e. RR ) |
| 80 | 19 | simpld | |- ( k e. NN -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
| 81 | 80 | adantl | |- ( ( T. /\ k e. NN ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
| 82 | peano2nn | |- ( k e. NN -> ( k + 1 ) e. NN ) |
|
| 83 | 82 | adantl | |- ( ( T. /\ k e. NN ) -> ( k + 1 ) e. NN ) |
| 84 | 64 | ffvelcdmi | |- ( ( k + 1 ) e. NN -> ( F ` ( k + 1 ) ) e. RR ) |
| 85 | 83 84 | syl | |- ( ( T. /\ k e. NN ) -> ( F ` ( k + 1 ) ) e. RR ) |
| 86 | 85 66 | lenegd | |- ( ( T. /\ k e. NN ) -> ( ( F ` ( k + 1 ) ) <_ ( F ` k ) <-> -u ( F ` k ) <_ -u ( F ` ( k + 1 ) ) ) ) |
| 87 | 81 86 | mpbid | |- ( ( T. /\ k e. NN ) -> -u ( F ` k ) <_ -u ( F ` ( k + 1 ) ) ) |
| 88 | fveq2 | |- ( x = ( k + 1 ) -> ( F ` x ) = ( F ` ( k + 1 ) ) ) |
|
| 89 | 88 | negeqd | |- ( x = ( k + 1 ) -> -u ( F ` x ) = -u ( F ` ( k + 1 ) ) ) |
| 90 | negex | |- -u ( F ` ( k + 1 ) ) e. _V |
|
| 91 | 89 54 90 | fvmpt | |- ( ( k + 1 ) e. NN -> ( ( x e. NN |-> -u ( F ` x ) ) ` ( k + 1 ) ) = -u ( F ` ( k + 1 ) ) ) |
| 92 | 83 91 | syl | |- ( ( T. /\ k e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` ( k + 1 ) ) = -u ( F ` ( k + 1 ) ) ) |
| 93 | 87 72 92 | 3brtr4d | |- ( ( T. /\ k e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` k ) <_ ( ( x e. NN |-> -u ( F ` x ) ) ` ( k + 1 ) ) ) |
| 94 | 93 | adantlr | |- ( ( ( T. /\ i e. NN ) /\ k e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` k ) <_ ( ( x e. NN |-> -u ( F ` x ) ) ` ( k + 1 ) ) ) |
| 95 | 5 16 76 79 94 | climub | |- ( ( T. /\ i e. NN ) -> ( ( x e. NN |-> -u ( F ` x ) ) ` i ) <_ ( 0 - gamma ) ) |
| 96 | 57 95 | eqbrtrrd | |- ( ( T. /\ i e. NN ) -> -u ( F ` i ) <_ ( 0 - gamma ) ) |
| 97 | df-neg | |- -u gamma = ( 0 - gamma ) |
|
| 98 | 96 97 | breqtrrdi | |- ( ( T. /\ i e. NN ) -> -u ( F ` i ) <_ -u gamma ) |
| 99 | 14 | mptru | |- gamma e. RR |
| 100 | 64 | ffvelcdmi | |- ( i e. NN -> ( F ` i ) e. RR ) |
| 101 | 100 | adantl | |- ( ( T. /\ i e. NN ) -> ( F ` i ) e. RR ) |
| 102 | leneg | |- ( ( gamma e. RR /\ ( F ` i ) e. RR ) -> ( gamma <_ ( F ` i ) <-> -u ( F ` i ) <_ -u gamma ) ) |
|
| 103 | 99 101 102 | sylancr | |- ( ( T. /\ i e. NN ) -> ( gamma <_ ( F ` i ) <-> -u ( F ` i ) <_ -u gamma ) ) |
| 104 | 98 103 | mpbird | |- ( ( T. /\ i e. NN ) -> gamma <_ ( F ` i ) ) |
| 105 | 104 | ralrimiva | |- ( T. -> A. i e. NN gamma <_ ( F ` i ) ) |
| 106 | fveq2 | |- ( i = 1 -> ( F ` i ) = ( F ` 1 ) ) |
|
| 107 | fveq2 | |- ( n = 1 -> ( log ` n ) = ( log ` 1 ) ) |
|
| 108 | log1 | |- ( log ` 1 ) = 0 |
|
| 109 | 107 108 | eqtrdi | |- ( n = 1 -> ( log ` n ) = 0 ) |
| 110 | 34 109 | oveq12d | |- ( n = 1 -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) = ( 1 - 0 ) ) |
| 111 | 1m0e1 | |- ( 1 - 0 ) = 1 |
|
| 112 | 110 111 | eqtrdi | |- ( n = 1 -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) = 1 ) |
| 113 | 40 | elexi | |- 1 e. _V |
| 114 | 112 1 113 | fvmpt | |- ( 1 e. NN -> ( F ` 1 ) = 1 ) |
| 115 | 15 114 | ax-mp | |- ( F ` 1 ) = 1 |
| 116 | 106 115 | eqtrdi | |- ( i = 1 -> ( F ` i ) = 1 ) |
| 117 | 116 | breq2d | |- ( i = 1 -> ( gamma <_ ( F ` i ) <-> gamma <_ 1 ) ) |
| 118 | 117 | rspcva | |- ( ( 1 e. NN /\ A. i e. NN gamma <_ ( F ` i ) ) -> gamma <_ 1 ) |
| 119 | 15 105 118 | sylancr | |- ( T. -> gamma <_ 1 ) |
| 120 | 44 40 | elicc2i | |- ( gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) <-> ( gamma e. RR /\ ( 1 - ( log ` 2 ) ) <_ gamma /\ gamma <_ 1 ) ) |
| 121 | 14 51 119 120 | syl3anbrc | |- ( T. -> gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) ) |
| 122 | ffn | |- ( F : NN --> RR -> F Fn NN ) |
|
| 123 | 64 122 | mp1i | |- ( T. -> F Fn NN ) |
| 124 | 16 5 | eleqtrdi | |- ( ( T. /\ i e. NN ) -> i e. ( ZZ>= ` 1 ) ) |
| 125 | elfznn | |- ( k e. ( 1 ... i ) -> k e. NN ) |
|
| 126 | 125 | adantl | |- ( ( ( T. /\ i e. NN ) /\ k e. ( 1 ... i ) ) -> k e. NN ) |
| 127 | 126 65 | syl | |- ( ( ( T. /\ i e. NN ) /\ k e. ( 1 ... i ) ) -> ( F ` k ) e. RR ) |
| 128 | elfznn | |- ( k e. ( 1 ... ( i - 1 ) ) -> k e. NN ) |
|
| 129 | 128 | adantl | |- ( ( ( T. /\ i e. NN ) /\ k e. ( 1 ... ( i - 1 ) ) ) -> k e. NN ) |
| 130 | 129 80 | syl | |- ( ( ( T. /\ i e. NN ) /\ k e. ( 1 ... ( i - 1 ) ) ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
| 131 | 124 127 130 | monoord2 | |- ( ( T. /\ i e. NN ) -> ( F ` i ) <_ ( F ` 1 ) ) |
| 132 | 131 115 | breqtrdi | |- ( ( T. /\ i e. NN ) -> ( F ` i ) <_ 1 ) |
| 133 | 99 40 | elicc2i | |- ( ( F ` i ) e. ( gamma [,] 1 ) <-> ( ( F ` i ) e. RR /\ gamma <_ ( F ` i ) /\ ( F ` i ) <_ 1 ) ) |
| 134 | 101 104 132 133 | syl3anbrc | |- ( ( T. /\ i e. NN ) -> ( F ` i ) e. ( gamma [,] 1 ) ) |
| 135 | 134 | ralrimiva | |- ( T. -> A. i e. NN ( F ` i ) e. ( gamma [,] 1 ) ) |
| 136 | ffnfv | |- ( F : NN --> ( gamma [,] 1 ) <-> ( F Fn NN /\ A. i e. NN ( F ` i ) e. ( gamma [,] 1 ) ) ) |
|
| 137 | 123 135 136 | sylanbrc | |- ( T. -> F : NN --> ( gamma [,] 1 ) ) |
| 138 | ffn | |- ( G : NN --> RR -> G Fn NN ) |
|
| 139 | 11 138 | mp1i | |- ( T. -> G Fn NN ) |
| 140 | 11 | ffvelcdmi | |- ( i e. NN -> ( G ` i ) e. RR ) |
| 141 | 140 | adantl | |- ( ( T. /\ i e. NN ) -> ( G ` i ) e. RR ) |
| 142 | 126 12 | syl | |- ( ( ( T. /\ i e. NN ) /\ k e. ( 1 ... i ) ) -> ( G ` k ) e. RR ) |
| 143 | 129 20 | syl | |- ( ( ( T. /\ i e. NN ) /\ k e. ( 1 ... ( i - 1 ) ) ) -> ( G ` k ) <_ ( G ` ( k + 1 ) ) ) |
| 144 | 124 142 143 | monoord | |- ( ( T. /\ i e. NN ) -> ( G ` 1 ) <_ ( G ` i ) ) |
| 145 | 47 144 | eqbrtrrid | |- ( ( T. /\ i e. NN ) -> ( 1 - ( log ` 2 ) ) <_ ( G ` i ) ) |
| 146 | 44 99 | elicc2i | |- ( ( G ` i ) e. ( ( 1 - ( log ` 2 ) ) [,] gamma ) <-> ( ( G ` i ) e. RR /\ ( 1 - ( log ` 2 ) ) <_ ( G ` i ) /\ ( G ` i ) <_ gamma ) ) |
| 147 | 141 145 22 146 | syl3anbrc | |- ( ( T. /\ i e. NN ) -> ( G ` i ) e. ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) |
| 148 | 147 | ralrimiva | |- ( T. -> A. i e. NN ( G ` i ) e. ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) |
| 149 | ffnfv | |- ( G : NN --> ( ( 1 - ( log ` 2 ) ) [,] gamma ) <-> ( G Fn NN /\ A. i e. NN ( G ` i ) e. ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) ) |
|
| 150 | 139 148 149 | sylanbrc | |- ( T. -> G : NN --> ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) |
| 151 | 121 137 150 | 3jca | |- ( T. -> ( gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) /\ F : NN --> ( gamma [,] 1 ) /\ G : NN --> ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) ) |
| 152 | 151 | mptru | |- ( gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) /\ F : NN --> ( gamma [,] 1 ) /\ G : NN --> ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) |