This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for emcl . The partial sums of the series T , which is used in Definition df-em , is in fact the same as G . (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | emcl.1 | |- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
|
| emcl.2 | |- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
||
| emcl.3 | |- H = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
||
| emcl.4 | |- T = ( n e. NN |-> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) ) |
||
| Assertion | emcllem5 | |- G = seq 1 ( + , T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | emcl.1 | |- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
|
| 2 | emcl.2 | |- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
|
| 3 | emcl.3 | |- H = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
|
| 4 | emcl.4 | |- T = ( n e. NN |-> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) ) |
|
| 5 | elfznn | |- ( m e. ( 1 ... n ) -> m e. NN ) |
|
| 6 | 5 | adantl | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> m e. NN ) |
| 7 | 6 | nncnd | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> m e. CC ) |
| 8 | 1cnd | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> 1 e. CC ) |
|
| 9 | 6 | nnne0d | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> m =/= 0 ) |
| 10 | 7 8 7 9 | divdird | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( ( m + 1 ) / m ) = ( ( m / m ) + ( 1 / m ) ) ) |
| 11 | 7 9 | dividd | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( m / m ) = 1 ) |
| 12 | 11 | oveq1d | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( ( m / m ) + ( 1 / m ) ) = ( 1 + ( 1 / m ) ) ) |
| 13 | 10 12 | eqtrd | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( ( m + 1 ) / m ) = ( 1 + ( 1 / m ) ) ) |
| 14 | 13 | fveq2d | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( log ` ( ( m + 1 ) / m ) ) = ( log ` ( 1 + ( 1 / m ) ) ) ) |
| 15 | peano2nn | |- ( m e. NN -> ( m + 1 ) e. NN ) |
|
| 16 | 6 15 | syl | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( m + 1 ) e. NN ) |
| 17 | 16 | nnrpd | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( m + 1 ) e. RR+ ) |
| 18 | 6 | nnrpd | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> m e. RR+ ) |
| 19 | 17 18 | relogdivd | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( log ` ( ( m + 1 ) / m ) ) = ( ( log ` ( m + 1 ) ) - ( log ` m ) ) ) |
| 20 | 14 19 | eqtr3d | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( log ` ( 1 + ( 1 / m ) ) ) = ( ( log ` ( m + 1 ) ) - ( log ` m ) ) ) |
| 21 | 20 | sumeq2dv | |- ( n e. NN -> sum_ m e. ( 1 ... n ) ( log ` ( 1 + ( 1 / m ) ) ) = sum_ m e. ( 1 ... n ) ( ( log ` ( m + 1 ) ) - ( log ` m ) ) ) |
| 22 | fveq2 | |- ( x = m -> ( log ` x ) = ( log ` m ) ) |
|
| 23 | fveq2 | |- ( x = ( m + 1 ) -> ( log ` x ) = ( log ` ( m + 1 ) ) ) |
|
| 24 | fveq2 | |- ( x = 1 -> ( log ` x ) = ( log ` 1 ) ) |
|
| 25 | fveq2 | |- ( x = ( n + 1 ) -> ( log ` x ) = ( log ` ( n + 1 ) ) ) |
|
| 26 | nnz | |- ( n e. NN -> n e. ZZ ) |
|
| 27 | peano2nn | |- ( n e. NN -> ( n + 1 ) e. NN ) |
|
| 28 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 29 | 27 28 | eleqtrdi | |- ( n e. NN -> ( n + 1 ) e. ( ZZ>= ` 1 ) ) |
| 30 | elfznn | |- ( x e. ( 1 ... ( n + 1 ) ) -> x e. NN ) |
|
| 31 | 30 | adantl | |- ( ( n e. NN /\ x e. ( 1 ... ( n + 1 ) ) ) -> x e. NN ) |
| 32 | 31 | nnrpd | |- ( ( n e. NN /\ x e. ( 1 ... ( n + 1 ) ) ) -> x e. RR+ ) |
| 33 | 32 | relogcld | |- ( ( n e. NN /\ x e. ( 1 ... ( n + 1 ) ) ) -> ( log ` x ) e. RR ) |
| 34 | 33 | recnd | |- ( ( n e. NN /\ x e. ( 1 ... ( n + 1 ) ) ) -> ( log ` x ) e. CC ) |
| 35 | 22 23 24 25 26 29 34 | telfsum2 | |- ( n e. NN -> sum_ m e. ( 1 ... n ) ( ( log ` ( m + 1 ) ) - ( log ` m ) ) = ( ( log ` ( n + 1 ) ) - ( log ` 1 ) ) ) |
| 36 | log1 | |- ( log ` 1 ) = 0 |
|
| 37 | 36 | oveq2i | |- ( ( log ` ( n + 1 ) ) - ( log ` 1 ) ) = ( ( log ` ( n + 1 ) ) - 0 ) |
| 38 | 27 | nnrpd | |- ( n e. NN -> ( n + 1 ) e. RR+ ) |
| 39 | 38 | relogcld | |- ( n e. NN -> ( log ` ( n + 1 ) ) e. RR ) |
| 40 | 39 | recnd | |- ( n e. NN -> ( log ` ( n + 1 ) ) e. CC ) |
| 41 | 40 | subid1d | |- ( n e. NN -> ( ( log ` ( n + 1 ) ) - 0 ) = ( log ` ( n + 1 ) ) ) |
| 42 | 37 41 | eqtrid | |- ( n e. NN -> ( ( log ` ( n + 1 ) ) - ( log ` 1 ) ) = ( log ` ( n + 1 ) ) ) |
| 43 | 21 35 42 | 3eqtrd | |- ( n e. NN -> sum_ m e. ( 1 ... n ) ( log ` ( 1 + ( 1 / m ) ) ) = ( log ` ( n + 1 ) ) ) |
| 44 | 43 | oveq2d | |- ( n e. NN -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - sum_ m e. ( 1 ... n ) ( log ` ( 1 + ( 1 / m ) ) ) ) = ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
| 45 | fzfid | |- ( n e. NN -> ( 1 ... n ) e. Fin ) |
|
| 46 | 6 | nnrecred | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( 1 / m ) e. RR ) |
| 47 | 46 | recnd | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( 1 / m ) e. CC ) |
| 48 | 1rp | |- 1 e. RR+ |
|
| 49 | 18 | rpreccld | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( 1 / m ) e. RR+ ) |
| 50 | rpaddcl | |- ( ( 1 e. RR+ /\ ( 1 / m ) e. RR+ ) -> ( 1 + ( 1 / m ) ) e. RR+ ) |
|
| 51 | 48 49 50 | sylancr | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( 1 + ( 1 / m ) ) e. RR+ ) |
| 52 | 51 | relogcld | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( log ` ( 1 + ( 1 / m ) ) ) e. RR ) |
| 53 | 52 | recnd | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( log ` ( 1 + ( 1 / m ) ) ) e. CC ) |
| 54 | 45 47 53 | fsumsub | |- ( n e. NN -> sum_ m e. ( 1 ... n ) ( ( 1 / m ) - ( log ` ( 1 + ( 1 / m ) ) ) ) = ( sum_ m e. ( 1 ... n ) ( 1 / m ) - sum_ m e. ( 1 ... n ) ( log ` ( 1 + ( 1 / m ) ) ) ) ) |
| 55 | oveq2 | |- ( n = m -> ( 1 / n ) = ( 1 / m ) ) |
|
| 56 | 55 | oveq2d | |- ( n = m -> ( 1 + ( 1 / n ) ) = ( 1 + ( 1 / m ) ) ) |
| 57 | 56 | fveq2d | |- ( n = m -> ( log ` ( 1 + ( 1 / n ) ) ) = ( log ` ( 1 + ( 1 / m ) ) ) ) |
| 58 | 55 57 | oveq12d | |- ( n = m -> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) = ( ( 1 / m ) - ( log ` ( 1 + ( 1 / m ) ) ) ) ) |
| 59 | ovex | |- ( ( 1 / m ) - ( log ` ( 1 + ( 1 / m ) ) ) ) e. _V |
|
| 60 | 58 4 59 | fvmpt | |- ( m e. NN -> ( T ` m ) = ( ( 1 / m ) - ( log ` ( 1 + ( 1 / m ) ) ) ) ) |
| 61 | 6 60 | syl | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( T ` m ) = ( ( 1 / m ) - ( log ` ( 1 + ( 1 / m ) ) ) ) ) |
| 62 | id | |- ( n e. NN -> n e. NN ) |
|
| 63 | 62 28 | eleqtrdi | |- ( n e. NN -> n e. ( ZZ>= ` 1 ) ) |
| 64 | 46 52 | resubcld | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( ( 1 / m ) - ( log ` ( 1 + ( 1 / m ) ) ) ) e. RR ) |
| 65 | 64 | recnd | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( ( 1 / m ) - ( log ` ( 1 + ( 1 / m ) ) ) ) e. CC ) |
| 66 | 61 63 65 | fsumser | |- ( n e. NN -> sum_ m e. ( 1 ... n ) ( ( 1 / m ) - ( log ` ( 1 + ( 1 / m ) ) ) ) = ( seq 1 ( + , T ) ` n ) ) |
| 67 | 54 66 | eqtr3d | |- ( n e. NN -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - sum_ m e. ( 1 ... n ) ( log ` ( 1 + ( 1 / m ) ) ) ) = ( seq 1 ( + , T ) ` n ) ) |
| 68 | 44 67 | eqtr3d | |- ( n e. NN -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) = ( seq 1 ( + , T ) ` n ) ) |
| 69 | 68 | mpteq2ia | |- ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) = ( n e. NN |-> ( seq 1 ( + , T ) ` n ) ) |
| 70 | 1z | |- 1 e. ZZ |
|
| 71 | seqfn | |- ( 1 e. ZZ -> seq 1 ( + , T ) Fn ( ZZ>= ` 1 ) ) |
|
| 72 | 70 71 | ax-mp | |- seq 1 ( + , T ) Fn ( ZZ>= ` 1 ) |
| 73 | 28 | fneq2i | |- ( seq 1 ( + , T ) Fn NN <-> seq 1 ( + , T ) Fn ( ZZ>= ` 1 ) ) |
| 74 | 72 73 | mpbir | |- seq 1 ( + , T ) Fn NN |
| 75 | dffn5 | |- ( seq 1 ( + , T ) Fn NN <-> seq 1 ( + , T ) = ( n e. NN |-> ( seq 1 ( + , T ) ` n ) ) ) |
|
| 76 | 74 75 | mpbi | |- seq 1 ( + , T ) = ( n e. NN |-> ( seq 1 ( + , T ) ` n ) ) |
| 77 | 69 2 76 | 3eqtr4i | |- G = seq 1 ( + , T ) |