This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for addition of positive reals. Part of Axiom 7 of Apostol p. 20. (Contributed by NM, 27-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpaddcl | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( A + B ) e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
| 2 | rpre | |- ( B e. RR+ -> B e. RR ) |
|
| 3 | readdcl | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( A + B ) e. RR ) |
| 5 | elrp | |- ( A e. RR+ <-> ( A e. RR /\ 0 < A ) ) |
|
| 6 | elrp | |- ( B e. RR+ <-> ( B e. RR /\ 0 < B ) ) |
|
| 7 | addgt0 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ 0 < B ) ) -> 0 < ( A + B ) ) |
|
| 8 | 7 | an4s | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( A + B ) ) |
| 9 | 5 6 8 | syl2anb | |- ( ( A e. RR+ /\ B e. RR+ ) -> 0 < ( A + B ) ) |
| 10 | elrp | |- ( ( A + B ) e. RR+ <-> ( ( A + B ) e. RR /\ 0 < ( A + B ) ) ) |
|
| 11 | 4 9 10 | sylanbrc | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( A + B ) e. RR+ ) |