This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure and bounds for the Euler-Mascheroni constant. (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | emcl | |- gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
|
| 2 | eqid | |- ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
|
| 3 | eqid | |- ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
|
| 4 | oveq2 | |- ( k = n -> ( 1 / k ) = ( 1 / n ) ) |
|
| 5 | 4 | oveq2d | |- ( k = n -> ( 1 + ( 1 / k ) ) = ( 1 + ( 1 / n ) ) ) |
| 6 | 5 | fveq2d | |- ( k = n -> ( log ` ( 1 + ( 1 / k ) ) ) = ( log ` ( 1 + ( 1 / n ) ) ) ) |
| 7 | 4 6 | oveq12d | |- ( k = n -> ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) = ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) ) |
| 8 | 7 | cbvmptv | |- ( k e. NN |-> ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) ) = ( n e. NN |-> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) ) |
| 9 | 1 2 3 8 | emcllem7 | |- ( gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) /\ ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) : NN --> ( gamma [,] 1 ) /\ ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) : NN --> ( ( 1 - ( log ` 2 ) ) [,] gamma ) ) |
| 10 | 9 | simp1i | |- gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) |