This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Euler-Mascheroni constant, gamma = 0.57721.... This is the limit of the series sum_ k e. ( 1 ... m ) ( 1 / k ) - ( logm ) , with a proof that the limit exists in emcl . (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-em | |- gamma = sum_ k e. NN ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cem | |- gamma |
|
| 1 | vk | |- k |
|
| 2 | cn | |- NN |
|
| 3 | c1 | |- 1 |
|
| 4 | cdiv | |- / |
|
| 5 | 1 | cv | |- k |
| 6 | 3 5 4 | co | |- ( 1 / k ) |
| 7 | cmin | |- - |
|
| 8 | clog | |- log |
|
| 9 | caddc | |- + |
|
| 10 | 3 6 9 | co | |- ( 1 + ( 1 / k ) ) |
| 11 | 10 8 | cfv | |- ( log ` ( 1 + ( 1 / k ) ) ) |
| 12 | 6 11 7 | co | |- ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) |
| 13 | 2 12 1 | csu | |- sum_ k e. NN ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) |
| 14 | 0 13 | wceq | |- gamma = sum_ k e. NN ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) |