This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for egt2lt3 . (Contributed by NM, 20-Mar-2005) (Proof shortened by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | erelem1.1 | |- F = ( n e. NN |-> ( 2 x. ( ( 1 / 2 ) ^ n ) ) ) |
|
| erelem1.2 | |- G = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) |
||
| Assertion | ege2le3 | |- ( 2 <_ _e /\ _e <_ 3 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erelem1.1 | |- F = ( n e. NN |-> ( 2 x. ( ( 1 / 2 ) ^ n ) ) ) |
|
| 2 | erelem1.2 | |- G = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) |
|
| 3 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 4 | 0nn0 | |- 0 e. NN0 |
|
| 5 | 4 | a1i | |- ( T. -> 0 e. NN0 ) |
| 6 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 7 | 0z | |- 0 e. ZZ |
|
| 8 | fveq2 | |- ( n = 0 -> ( ! ` n ) = ( ! ` 0 ) ) |
|
| 9 | fac0 | |- ( ! ` 0 ) = 1 |
|
| 10 | 8 9 | eqtrdi | |- ( n = 0 -> ( ! ` n ) = 1 ) |
| 11 | 10 | oveq2d | |- ( n = 0 -> ( 1 / ( ! ` n ) ) = ( 1 / 1 ) ) |
| 12 | ax-1cn | |- 1 e. CC |
|
| 13 | 12 | div1i | |- ( 1 / 1 ) = 1 |
| 14 | 11 13 | eqtrdi | |- ( n = 0 -> ( 1 / ( ! ` n ) ) = 1 ) |
| 15 | 1ex | |- 1 e. _V |
|
| 16 | 14 2 15 | fvmpt | |- ( 0 e. NN0 -> ( G ` 0 ) = 1 ) |
| 17 | 4 16 | mp1i | |- ( T. -> ( G ` 0 ) = 1 ) |
| 18 | 7 17 | seq1i | |- ( T. -> ( seq 0 ( + , G ) ` 0 ) = 1 ) |
| 19 | 1nn0 | |- 1 e. NN0 |
|
| 20 | fveq2 | |- ( n = 1 -> ( ! ` n ) = ( ! ` 1 ) ) |
|
| 21 | fac1 | |- ( ! ` 1 ) = 1 |
|
| 22 | 20 21 | eqtrdi | |- ( n = 1 -> ( ! ` n ) = 1 ) |
| 23 | 22 | oveq2d | |- ( n = 1 -> ( 1 / ( ! ` n ) ) = ( 1 / 1 ) ) |
| 24 | 23 13 | eqtrdi | |- ( n = 1 -> ( 1 / ( ! ` n ) ) = 1 ) |
| 25 | 24 2 15 | fvmpt | |- ( 1 e. NN0 -> ( G ` 1 ) = 1 ) |
| 26 | 19 25 | mp1i | |- ( T. -> ( G ` 1 ) = 1 ) |
| 27 | 3 5 6 18 26 | seqp1d | |- ( T. -> ( seq 0 ( + , G ) ` 1 ) = ( 1 + 1 ) ) |
| 28 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 29 | 27 28 | eqtr4di | |- ( T. -> ( seq 0 ( + , G ) ` 1 ) = 2 ) |
| 30 | 19 | a1i | |- ( T. -> 1 e. NN0 ) |
| 31 | nn0z | |- ( n e. NN0 -> n e. ZZ ) |
|
| 32 | 1exp | |- ( n e. ZZ -> ( 1 ^ n ) = 1 ) |
|
| 33 | 31 32 | syl | |- ( n e. NN0 -> ( 1 ^ n ) = 1 ) |
| 34 | 33 | oveq1d | |- ( n e. NN0 -> ( ( 1 ^ n ) / ( ! ` n ) ) = ( 1 / ( ! ` n ) ) ) |
| 35 | 34 | mpteq2ia | |- ( n e. NN0 |-> ( ( 1 ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) |
| 36 | 2 35 | eqtr4i | |- G = ( n e. NN0 |-> ( ( 1 ^ n ) / ( ! ` n ) ) ) |
| 37 | 36 | efcvg | |- ( 1 e. CC -> seq 0 ( + , G ) ~~> ( exp ` 1 ) ) |
| 38 | 12 37 | mp1i | |- ( T. -> seq 0 ( + , G ) ~~> ( exp ` 1 ) ) |
| 39 | df-e | |- _e = ( exp ` 1 ) |
|
| 40 | 38 39 | breqtrrdi | |- ( T. -> seq 0 ( + , G ) ~~> _e ) |
| 41 | fveq2 | |- ( n = k -> ( ! ` n ) = ( ! ` k ) ) |
|
| 42 | 41 | oveq2d | |- ( n = k -> ( 1 / ( ! ` n ) ) = ( 1 / ( ! ` k ) ) ) |
| 43 | ovex | |- ( 1 / ( ! ` k ) ) e. _V |
|
| 44 | 42 2 43 | fvmpt | |- ( k e. NN0 -> ( G ` k ) = ( 1 / ( ! ` k ) ) ) |
| 45 | 44 | adantl | |- ( ( T. /\ k e. NN0 ) -> ( G ` k ) = ( 1 / ( ! ` k ) ) ) |
| 46 | faccl | |- ( k e. NN0 -> ( ! ` k ) e. NN ) |
|
| 47 | 46 | adantl | |- ( ( T. /\ k e. NN0 ) -> ( ! ` k ) e. NN ) |
| 48 | 47 | nnrecred | |- ( ( T. /\ k e. NN0 ) -> ( 1 / ( ! ` k ) ) e. RR ) |
| 49 | 45 48 | eqeltrd | |- ( ( T. /\ k e. NN0 ) -> ( G ` k ) e. RR ) |
| 50 | 47 | nnred | |- ( ( T. /\ k e. NN0 ) -> ( ! ` k ) e. RR ) |
| 51 | 47 | nngt0d | |- ( ( T. /\ k e. NN0 ) -> 0 < ( ! ` k ) ) |
| 52 | 1re | |- 1 e. RR |
|
| 53 | 0le1 | |- 0 <_ 1 |
|
| 54 | divge0 | |- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( ! ` k ) e. RR /\ 0 < ( ! ` k ) ) ) -> 0 <_ ( 1 / ( ! ` k ) ) ) |
|
| 55 | 52 53 54 | mpanl12 | |- ( ( ( ! ` k ) e. RR /\ 0 < ( ! ` k ) ) -> 0 <_ ( 1 / ( ! ` k ) ) ) |
| 56 | 50 51 55 | syl2anc | |- ( ( T. /\ k e. NN0 ) -> 0 <_ ( 1 / ( ! ` k ) ) ) |
| 57 | 56 45 | breqtrrd | |- ( ( T. /\ k e. NN0 ) -> 0 <_ ( G ` k ) ) |
| 58 | 3 30 40 49 57 | climserle | |- ( T. -> ( seq 0 ( + , G ) ` 1 ) <_ _e ) |
| 59 | 29 58 | eqbrtrrd | |- ( T. -> 2 <_ _e ) |
| 60 | 59 | mptru | |- 2 <_ _e |
| 61 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 62 | 1zzd | |- ( T. -> 1 e. ZZ ) |
|
| 63 | 49 | recnd | |- ( ( T. /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
| 64 | 3 5 63 40 | clim2ser | |- ( T. -> seq ( 0 + 1 ) ( + , G ) ~~> ( _e - ( seq 0 ( + , G ) ` 0 ) ) ) |
| 65 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 66 | seqeq1 | |- ( ( 0 + 1 ) = 1 -> seq ( 0 + 1 ) ( + , G ) = seq 1 ( + , G ) ) |
|
| 67 | 65 66 | ax-mp | |- seq ( 0 + 1 ) ( + , G ) = seq 1 ( + , G ) |
| 68 | 18 | mptru | |- ( seq 0 ( + , G ) ` 0 ) = 1 |
| 69 | 68 | oveq2i | |- ( _e - ( seq 0 ( + , G ) ` 0 ) ) = ( _e - 1 ) |
| 70 | 64 67 69 | 3brtr3g | |- ( T. -> seq 1 ( + , G ) ~~> ( _e - 1 ) ) |
| 71 | 2cnd | |- ( T. -> 2 e. CC ) |
|
| 72 | oveq2 | |- ( n = k -> ( ( 1 / 2 ) ^ n ) = ( ( 1 / 2 ) ^ k ) ) |
|
| 73 | eqid | |- ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) |
|
| 74 | ovex | |- ( ( 1 / 2 ) ^ k ) e. _V |
|
| 75 | 72 73 74 | fvmpt | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) |
| 76 | 75 | adantl | |- ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) |
| 77 | halfre | |- ( 1 / 2 ) e. RR |
|
| 78 | simpr | |- ( ( T. /\ k e. NN0 ) -> k e. NN0 ) |
|
| 79 | reexpcl | |- ( ( ( 1 / 2 ) e. RR /\ k e. NN0 ) -> ( ( 1 / 2 ) ^ k ) e. RR ) |
|
| 80 | 77 78 79 | sylancr | |- ( ( T. /\ k e. NN0 ) -> ( ( 1 / 2 ) ^ k ) e. RR ) |
| 81 | 80 | recnd | |- ( ( T. /\ k e. NN0 ) -> ( ( 1 / 2 ) ^ k ) e. CC ) |
| 82 | 76 81 | eqeltrd | |- ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) e. CC ) |
| 83 | 1lt2 | |- 1 < 2 |
|
| 84 | 2re | |- 2 e. RR |
|
| 85 | 0le2 | |- 0 <_ 2 |
|
| 86 | absid | |- ( ( 2 e. RR /\ 0 <_ 2 ) -> ( abs ` 2 ) = 2 ) |
|
| 87 | 84 85 86 | mp2an | |- ( abs ` 2 ) = 2 |
| 88 | 83 87 | breqtrri | |- 1 < ( abs ` 2 ) |
| 89 | 88 | a1i | |- ( T. -> 1 < ( abs ` 2 ) ) |
| 90 | 71 89 76 | georeclim | |- ( T. -> seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ~~> ( 2 / ( 2 - 1 ) ) ) |
| 91 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 92 | 91 | oveq2i | |- ( 2 / ( 2 - 1 ) ) = ( 2 / 1 ) |
| 93 | 2cn | |- 2 e. CC |
|
| 94 | 93 | div1i | |- ( 2 / 1 ) = 2 |
| 95 | 92 94 | eqtri | |- ( 2 / ( 2 - 1 ) ) = 2 |
| 96 | 90 95 | breqtrdi | |- ( T. -> seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ~~> 2 ) |
| 97 | 3 5 82 96 | clim2ser | |- ( T. -> seq ( 0 + 1 ) ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ~~> ( 2 - ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) ) ) |
| 98 | seqeq1 | |- ( ( 0 + 1 ) = 1 -> seq ( 0 + 1 ) ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) = seq 1 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ) |
|
| 99 | 65 98 | ax-mp | |- seq ( 0 + 1 ) ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) = seq 1 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) |
| 100 | oveq2 | |- ( n = 0 -> ( ( 1 / 2 ) ^ n ) = ( ( 1 / 2 ) ^ 0 ) ) |
|
| 101 | ovex | |- ( ( 1 / 2 ) ^ 0 ) e. _V |
|
| 102 | 100 73 101 | fvmpt | |- ( 0 e. NN0 -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` 0 ) = ( ( 1 / 2 ) ^ 0 ) ) |
| 103 | 4 102 | ax-mp | |- ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` 0 ) = ( ( 1 / 2 ) ^ 0 ) |
| 104 | halfcn | |- ( 1 / 2 ) e. CC |
|
| 105 | exp0 | |- ( ( 1 / 2 ) e. CC -> ( ( 1 / 2 ) ^ 0 ) = 1 ) |
|
| 106 | 104 105 | ax-mp | |- ( ( 1 / 2 ) ^ 0 ) = 1 |
| 107 | 103 106 | eqtri | |- ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` 0 ) = 1 |
| 108 | 107 | a1i | |- ( T. -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` 0 ) = 1 ) |
| 109 | 7 108 | seq1i | |- ( T. -> ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) = 1 ) |
| 110 | 109 | mptru | |- ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) = 1 |
| 111 | 110 | oveq2i | |- ( 2 - ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) ) = ( 2 - 1 ) |
| 112 | 111 91 | eqtri | |- ( 2 - ( seq 0 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ` 0 ) ) = 1 |
| 113 | 97 99 112 | 3brtr3g | |- ( T. -> seq 1 ( + , ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) ~~> 1 ) |
| 114 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 115 | 114 82 | sylan2 | |- ( ( T. /\ k e. NN ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) e. CC ) |
| 116 | 72 | oveq2d | |- ( n = k -> ( 2 x. ( ( 1 / 2 ) ^ n ) ) = ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
| 117 | ovex | |- ( 2 x. ( ( 1 / 2 ) ^ k ) ) e. _V |
|
| 118 | 116 1 117 | fvmpt | |- ( k e. NN -> ( F ` k ) = ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
| 119 | 118 | adantl | |- ( ( T. /\ k e. NN ) -> ( F ` k ) = ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
| 120 | 114 76 | sylan2 | |- ( ( T. /\ k e. NN ) -> ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) |
| 121 | 120 | oveq2d | |- ( ( T. /\ k e. NN ) -> ( 2 x. ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) ) = ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
| 122 | 119 121 | eqtr4d | |- ( ( T. /\ k e. NN ) -> ( F ` k ) = ( 2 x. ( ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ` k ) ) ) |
| 123 | 61 62 71 113 115 122 | isermulc2 | |- ( T. -> seq 1 ( + , F ) ~~> ( 2 x. 1 ) ) |
| 124 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 125 | 123 124 | breqtrdi | |- ( T. -> seq 1 ( + , F ) ~~> 2 ) |
| 126 | 114 49 | sylan2 | |- ( ( T. /\ k e. NN ) -> ( G ` k ) e. RR ) |
| 127 | remulcl | |- ( ( 2 e. RR /\ ( ( 1 / 2 ) ^ k ) e. RR ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) e. RR ) |
|
| 128 | 84 80 127 | sylancr | |- ( ( T. /\ k e. NN0 ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) e. RR ) |
| 129 | 114 128 | sylan2 | |- ( ( T. /\ k e. NN ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) e. RR ) |
| 130 | 119 129 | eqeltrd | |- ( ( T. /\ k e. NN ) -> ( F ` k ) e. RR ) |
| 131 | faclbnd2 | |- ( k e. NN0 -> ( ( 2 ^ k ) / 2 ) <_ ( ! ` k ) ) |
|
| 132 | 131 | adantl | |- ( ( T. /\ k e. NN0 ) -> ( ( 2 ^ k ) / 2 ) <_ ( ! ` k ) ) |
| 133 | 2nn | |- 2 e. NN |
|
| 134 | nnexpcl | |- ( ( 2 e. NN /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) |
|
| 135 | 133 78 134 | sylancr | |- ( ( T. /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) |
| 136 | 135 | nnrpd | |- ( ( T. /\ k e. NN0 ) -> ( 2 ^ k ) e. RR+ ) |
| 137 | 136 | rphalfcld | |- ( ( T. /\ k e. NN0 ) -> ( ( 2 ^ k ) / 2 ) e. RR+ ) |
| 138 | 47 | nnrpd | |- ( ( T. /\ k e. NN0 ) -> ( ! ` k ) e. RR+ ) |
| 139 | 137 138 | lerecd | |- ( ( T. /\ k e. NN0 ) -> ( ( ( 2 ^ k ) / 2 ) <_ ( ! ` k ) <-> ( 1 / ( ! ` k ) ) <_ ( 1 / ( ( 2 ^ k ) / 2 ) ) ) ) |
| 140 | 132 139 | mpbid | |- ( ( T. /\ k e. NN0 ) -> ( 1 / ( ! ` k ) ) <_ ( 1 / ( ( 2 ^ k ) / 2 ) ) ) |
| 141 | 2cnd | |- ( ( T. /\ k e. NN0 ) -> 2 e. CC ) |
|
| 142 | 135 | nncnd | |- ( ( T. /\ k e. NN0 ) -> ( 2 ^ k ) e. CC ) |
| 143 | 135 | nnne0d | |- ( ( T. /\ k e. NN0 ) -> ( 2 ^ k ) =/= 0 ) |
| 144 | 141 142 143 | divrecd | |- ( ( T. /\ k e. NN0 ) -> ( 2 / ( 2 ^ k ) ) = ( 2 x. ( 1 / ( 2 ^ k ) ) ) ) |
| 145 | 2ne0 | |- 2 =/= 0 |
|
| 146 | recdiv | |- ( ( ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( 1 / ( ( 2 ^ k ) / 2 ) ) = ( 2 / ( 2 ^ k ) ) ) |
|
| 147 | 93 145 146 | mpanr12 | |- ( ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) -> ( 1 / ( ( 2 ^ k ) / 2 ) ) = ( 2 / ( 2 ^ k ) ) ) |
| 148 | 142 143 147 | syl2anc | |- ( ( T. /\ k e. NN0 ) -> ( 1 / ( ( 2 ^ k ) / 2 ) ) = ( 2 / ( 2 ^ k ) ) ) |
| 149 | 145 | a1i | |- ( ( T. /\ k e. NN0 ) -> 2 =/= 0 ) |
| 150 | nn0z | |- ( k e. NN0 -> k e. ZZ ) |
|
| 151 | 150 | adantl | |- ( ( T. /\ k e. NN0 ) -> k e. ZZ ) |
| 152 | 141 149 151 | exprecd | |- ( ( T. /\ k e. NN0 ) -> ( ( 1 / 2 ) ^ k ) = ( 1 / ( 2 ^ k ) ) ) |
| 153 | 152 | oveq2d | |- ( ( T. /\ k e. NN0 ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) = ( 2 x. ( 1 / ( 2 ^ k ) ) ) ) |
| 154 | 144 148 153 | 3eqtr4rd | |- ( ( T. /\ k e. NN0 ) -> ( 2 x. ( ( 1 / 2 ) ^ k ) ) = ( 1 / ( ( 2 ^ k ) / 2 ) ) ) |
| 155 | 140 154 | breqtrrd | |- ( ( T. /\ k e. NN0 ) -> ( 1 / ( ! ` k ) ) <_ ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
| 156 | 114 155 | sylan2 | |- ( ( T. /\ k e. NN ) -> ( 1 / ( ! ` k ) ) <_ ( 2 x. ( ( 1 / 2 ) ^ k ) ) ) |
| 157 | 114 45 | sylan2 | |- ( ( T. /\ k e. NN ) -> ( G ` k ) = ( 1 / ( ! ` k ) ) ) |
| 158 | 156 157 119 | 3brtr4d | |- ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( F ` k ) ) |
| 159 | 61 62 70 125 126 130 158 | iserle | |- ( T. -> ( _e - 1 ) <_ 2 ) |
| 160 | 159 | mptru | |- ( _e - 1 ) <_ 2 |
| 161 | ere | |- _e e. RR |
|
| 162 | 161 52 84 | lesubaddi | |- ( ( _e - 1 ) <_ 2 <-> _e <_ ( 2 + 1 ) ) |
| 163 | 160 162 | mpbi | |- _e <_ ( 2 + 1 ) |
| 164 | df-3 | |- 3 = ( 2 + 1 ) |
|
| 165 | 163 164 | breqtrri | |- _e <_ 3 |
| 166 | 60 165 | pm3.2i | |- ( 2 <_ _e /\ _e <_ 3 ) |