This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | faclbnd2 | |- ( N e. NN0 -> ( ( 2 ^ N ) / 2 ) <_ ( ! ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sq2 | |- ( 2 ^ 2 ) = 4 |
|
| 2 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 3 | 1 2 | eqtr4i | |- ( 2 ^ 2 ) = ( 2 x. 2 ) |
| 4 | 3 | oveq2i | |- ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 2 ) ) = ( ( 2 ^ ( N + 1 ) ) / ( 2 x. 2 ) ) |
| 5 | 2cn | |- 2 e. CC |
|
| 6 | expp1 | |- ( ( 2 e. CC /\ N e. NN0 ) -> ( 2 ^ ( N + 1 ) ) = ( ( 2 ^ N ) x. 2 ) ) |
|
| 7 | 5 6 | mpan | |- ( N e. NN0 -> ( 2 ^ ( N + 1 ) ) = ( ( 2 ^ N ) x. 2 ) ) |
| 8 | 7 | oveq1d | |- ( N e. NN0 -> ( ( 2 ^ ( N + 1 ) ) / ( 2 x. 2 ) ) = ( ( ( 2 ^ N ) x. 2 ) / ( 2 x. 2 ) ) ) |
| 9 | 4 8 | eqtrid | |- ( N e. NN0 -> ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 2 ) ) = ( ( ( 2 ^ N ) x. 2 ) / ( 2 x. 2 ) ) ) |
| 10 | expcl | |- ( ( 2 e. CC /\ N e. NN0 ) -> ( 2 ^ N ) e. CC ) |
|
| 11 | 5 10 | mpan | |- ( N e. NN0 -> ( 2 ^ N ) e. CC ) |
| 12 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 13 | divmuldiv | |- ( ( ( ( 2 ^ N ) e. CC /\ 2 e. CC ) /\ ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) ) -> ( ( ( 2 ^ N ) / 2 ) x. ( 2 / 2 ) ) = ( ( ( 2 ^ N ) x. 2 ) / ( 2 x. 2 ) ) ) |
|
| 14 | 12 12 13 | mpanr12 | |- ( ( ( 2 ^ N ) e. CC /\ 2 e. CC ) -> ( ( ( 2 ^ N ) / 2 ) x. ( 2 / 2 ) ) = ( ( ( 2 ^ N ) x. 2 ) / ( 2 x. 2 ) ) ) |
| 15 | 11 5 14 | sylancl | |- ( N e. NN0 -> ( ( ( 2 ^ N ) / 2 ) x. ( 2 / 2 ) ) = ( ( ( 2 ^ N ) x. 2 ) / ( 2 x. 2 ) ) ) |
| 16 | 2div2e1 | |- ( 2 / 2 ) = 1 |
|
| 17 | 16 | oveq2i | |- ( ( ( 2 ^ N ) / 2 ) x. ( 2 / 2 ) ) = ( ( ( 2 ^ N ) / 2 ) x. 1 ) |
| 18 | 11 | halfcld | |- ( N e. NN0 -> ( ( 2 ^ N ) / 2 ) e. CC ) |
| 19 | 18 | mulridd | |- ( N e. NN0 -> ( ( ( 2 ^ N ) / 2 ) x. 1 ) = ( ( 2 ^ N ) / 2 ) ) |
| 20 | 17 19 | eqtrid | |- ( N e. NN0 -> ( ( ( 2 ^ N ) / 2 ) x. ( 2 / 2 ) ) = ( ( 2 ^ N ) / 2 ) ) |
| 21 | 9 15 20 | 3eqtr2rd | |- ( N e. NN0 -> ( ( 2 ^ N ) / 2 ) = ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 2 ) ) ) |
| 22 | 2nn0 | |- 2 e. NN0 |
|
| 23 | faclbnd | |- ( ( 2 e. NN0 /\ N e. NN0 ) -> ( 2 ^ ( N + 1 ) ) <_ ( ( 2 ^ 2 ) x. ( ! ` N ) ) ) |
|
| 24 | 22 23 | mpan | |- ( N e. NN0 -> ( 2 ^ ( N + 1 ) ) <_ ( ( 2 ^ 2 ) x. ( ! ` N ) ) ) |
| 25 | 2re | |- 2 e. RR |
|
| 26 | peano2nn0 | |- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
|
| 27 | reexpcl | |- ( ( 2 e. RR /\ ( N + 1 ) e. NN0 ) -> ( 2 ^ ( N + 1 ) ) e. RR ) |
|
| 28 | 25 26 27 | sylancr | |- ( N e. NN0 -> ( 2 ^ ( N + 1 ) ) e. RR ) |
| 29 | faccl | |- ( N e. NN0 -> ( ! ` N ) e. NN ) |
|
| 30 | 29 | nnred | |- ( N e. NN0 -> ( ! ` N ) e. RR ) |
| 31 | 4re | |- 4 e. RR |
|
| 32 | 1 31 | eqeltri | |- ( 2 ^ 2 ) e. RR |
| 33 | 4pos | |- 0 < 4 |
|
| 34 | 33 1 | breqtrri | |- 0 < ( 2 ^ 2 ) |
| 35 | 32 34 | pm3.2i | |- ( ( 2 ^ 2 ) e. RR /\ 0 < ( 2 ^ 2 ) ) |
| 36 | ledivmul | |- ( ( ( 2 ^ ( N + 1 ) ) e. RR /\ ( ! ` N ) e. RR /\ ( ( 2 ^ 2 ) e. RR /\ 0 < ( 2 ^ 2 ) ) ) -> ( ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 2 ) ) <_ ( ! ` N ) <-> ( 2 ^ ( N + 1 ) ) <_ ( ( 2 ^ 2 ) x. ( ! ` N ) ) ) ) |
|
| 37 | 35 36 | mp3an3 | |- ( ( ( 2 ^ ( N + 1 ) ) e. RR /\ ( ! ` N ) e. RR ) -> ( ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 2 ) ) <_ ( ! ` N ) <-> ( 2 ^ ( N + 1 ) ) <_ ( ( 2 ^ 2 ) x. ( ! ` N ) ) ) ) |
| 38 | 28 30 37 | syl2anc | |- ( N e. NN0 -> ( ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 2 ) ) <_ ( ! ` N ) <-> ( 2 ^ ( N + 1 ) ) <_ ( ( 2 ^ 2 ) x. ( ! ` N ) ) ) ) |
| 39 | 24 38 | mpbird | |- ( N e. NN0 -> ( ( 2 ^ ( N + 1 ) ) / ( 2 ^ 2 ) ) <_ ( ! ` N ) ) |
| 40 | 21 39 | eqbrtrd | |- ( N e. NN0 -> ( ( 2 ^ N ) / 2 ) <_ ( ! ` N ) ) |