This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The series that defines the exponential function converges to it. (Contributed by NM, 9-Jan-2006) (Revised by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efcvg.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| Assertion | efcvg | |- ( A e. CC -> seq 0 ( + , F ) ~~> ( exp ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efcvg.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| 2 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 3 | 0zd | |- ( A e. CC -> 0 e. ZZ ) |
|
| 4 | 1 | eftval | |- ( k e. NN0 -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 5 | 4 | adantl | |- ( ( A e. CC /\ k e. NN0 ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 6 | eftcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
|
| 7 | 1 | efcllem | |- ( A e. CC -> seq 0 ( + , F ) e. dom ~~> ) |
| 8 | 2 3 5 6 7 | isumclim2 | |- ( A e. CC -> seq 0 ( + , F ) ~~> sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) ) |
| 9 | efval | |- ( A e. CC -> ( exp ` A ) = sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) ) |
|
| 10 | 8 9 | breqtrrd | |- ( A e. CC -> seq 0 ( + , F ) ~~> ( exp ` A ) ) |