This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of a ratio. (Contributed by NM, 3-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recdiv | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( 1 / ( A / B ) ) = ( B / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1div1e1 | |- ( 1 / 1 ) = 1 |
|
| 2 | 1 | oveq1i | |- ( ( 1 / 1 ) / ( A / B ) ) = ( 1 / ( A / B ) ) |
| 3 | ax-1cn | |- 1 e. CC |
|
| 4 | ax-1ne0 | |- 1 =/= 0 |
|
| 5 | 3 4 | pm3.2i | |- ( 1 e. CC /\ 1 =/= 0 ) |
| 6 | divdivdiv | |- ( ( ( 1 e. CC /\ ( 1 e. CC /\ 1 =/= 0 ) ) /\ ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) ) -> ( ( 1 / 1 ) / ( A / B ) ) = ( ( 1 x. B ) / ( 1 x. A ) ) ) |
|
| 7 | 3 5 6 | mpanl12 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 / 1 ) / ( A / B ) ) = ( ( 1 x. B ) / ( 1 x. A ) ) ) |
| 8 | 2 7 | eqtr3id | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( 1 / ( A / B ) ) = ( ( 1 x. B ) / ( 1 x. A ) ) ) |
| 9 | mullid | |- ( B e. CC -> ( 1 x. B ) = B ) |
|
| 10 | mullid | |- ( A e. CC -> ( 1 x. A ) = A ) |
|
| 11 | 9 10 | oveqan12rd | |- ( ( A e. CC /\ B e. CC ) -> ( ( 1 x. B ) / ( 1 x. A ) ) = ( B / A ) ) |
| 12 | 11 | ad2ant2r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 x. B ) / ( 1 x. A ) ) = ( B / A ) ) |
| 13 | 8 12 | eqtrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( 1 / ( A / B ) ) = ( B / A ) ) |