This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005) (Revised by Mario Carneiro, 9-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2ser.1 | |- Z = ( ZZ>= ` M ) |
|
| climserle.2 | |- ( ph -> N e. Z ) |
||
| climserle.3 | |- ( ph -> seq M ( + , F ) ~~> A ) |
||
| climserle.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
||
| climserle.5 | |- ( ( ph /\ k e. Z ) -> 0 <_ ( F ` k ) ) |
||
| Assertion | climserle | |- ( ph -> ( seq M ( + , F ) ` N ) <_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climserle.2 | |- ( ph -> N e. Z ) |
|
| 3 | climserle.3 | |- ( ph -> seq M ( + , F ) ~~> A ) |
|
| 4 | climserle.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
|
| 5 | climserle.5 | |- ( ( ph /\ k e. Z ) -> 0 <_ ( F ` k ) ) |
|
| 6 | 2 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 7 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 8 | 6 7 | syl | |- ( ph -> M e. ZZ ) |
| 9 | 1 8 4 | serfre | |- ( ph -> seq M ( + , F ) : Z --> RR ) |
| 10 | 9 | ffvelcdmda | |- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. RR ) |
| 11 | 1 | peano2uzs | |- ( j e. Z -> ( j + 1 ) e. Z ) |
| 12 | fveq2 | |- ( k = ( j + 1 ) -> ( F ` k ) = ( F ` ( j + 1 ) ) ) |
|
| 13 | 12 | breq2d | |- ( k = ( j + 1 ) -> ( 0 <_ ( F ` k ) <-> 0 <_ ( F ` ( j + 1 ) ) ) ) |
| 14 | 13 | imbi2d | |- ( k = ( j + 1 ) -> ( ( ph -> 0 <_ ( F ` k ) ) <-> ( ph -> 0 <_ ( F ` ( j + 1 ) ) ) ) ) |
| 15 | 5 | expcom | |- ( k e. Z -> ( ph -> 0 <_ ( F ` k ) ) ) |
| 16 | 14 15 | vtoclga | |- ( ( j + 1 ) e. Z -> ( ph -> 0 <_ ( F ` ( j + 1 ) ) ) ) |
| 17 | 16 | impcom | |- ( ( ph /\ ( j + 1 ) e. Z ) -> 0 <_ ( F ` ( j + 1 ) ) ) |
| 18 | 11 17 | sylan2 | |- ( ( ph /\ j e. Z ) -> 0 <_ ( F ` ( j + 1 ) ) ) |
| 19 | 12 | eleq1d | |- ( k = ( j + 1 ) -> ( ( F ` k ) e. RR <-> ( F ` ( j + 1 ) ) e. RR ) ) |
| 20 | 19 | imbi2d | |- ( k = ( j + 1 ) -> ( ( ph -> ( F ` k ) e. RR ) <-> ( ph -> ( F ` ( j + 1 ) ) e. RR ) ) ) |
| 21 | 4 | expcom | |- ( k e. Z -> ( ph -> ( F ` k ) e. RR ) ) |
| 22 | 20 21 | vtoclga | |- ( ( j + 1 ) e. Z -> ( ph -> ( F ` ( j + 1 ) ) e. RR ) ) |
| 23 | 22 | impcom | |- ( ( ph /\ ( j + 1 ) e. Z ) -> ( F ` ( j + 1 ) ) e. RR ) |
| 24 | 11 23 | sylan2 | |- ( ( ph /\ j e. Z ) -> ( F ` ( j + 1 ) ) e. RR ) |
| 25 | 10 24 | addge01d | |- ( ( ph /\ j e. Z ) -> ( 0 <_ ( F ` ( j + 1 ) ) <-> ( seq M ( + , F ) ` j ) <_ ( ( seq M ( + , F ) ` j ) + ( F ` ( j + 1 ) ) ) ) ) |
| 26 | 18 25 | mpbid | |- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) <_ ( ( seq M ( + , F ) ` j ) + ( F ` ( j + 1 ) ) ) ) |
| 27 | simpr | |- ( ( ph /\ j e. Z ) -> j e. Z ) |
|
| 28 | 27 1 | eleqtrdi | |- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
| 29 | seqp1 | |- ( j e. ( ZZ>= ` M ) -> ( seq M ( + , F ) ` ( j + 1 ) ) = ( ( seq M ( + , F ) ` j ) + ( F ` ( j + 1 ) ) ) ) |
|
| 30 | 28 29 | syl | |- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` ( j + 1 ) ) = ( ( seq M ( + , F ) ` j ) + ( F ` ( j + 1 ) ) ) ) |
| 31 | 26 30 | breqtrrd | |- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) <_ ( seq M ( + , F ) ` ( j + 1 ) ) ) |
| 32 | 1 2 3 10 31 | climub | |- ( ph -> ( seq M ( + , F ) ` N ) <_ A ) |