This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for egt2lt3 . (Contributed by NM, 20-Mar-2005) (Proof shortened by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | erelem1.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 2 · ( ( 1 / 2 ) ↑ 𝑛 ) ) ) | |
| erelem1.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ! ‘ 𝑛 ) ) ) | ||
| Assertion | ege2le3 | ⊢ ( 2 ≤ e ∧ e ≤ 3 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erelem1.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 2 · ( ( 1 / 2 ) ↑ 𝑛 ) ) ) | |
| 2 | erelem1.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ! ‘ 𝑛 ) ) ) | |
| 3 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 4 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 5 | 4 | a1i | ⊢ ( ⊤ → 0 ∈ ℕ0 ) |
| 6 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 7 | 0z | ⊢ 0 ∈ ℤ | |
| 8 | fveq2 | ⊢ ( 𝑛 = 0 → ( ! ‘ 𝑛 ) = ( ! ‘ 0 ) ) | |
| 9 | fac0 | ⊢ ( ! ‘ 0 ) = 1 | |
| 10 | 8 9 | eqtrdi | ⊢ ( 𝑛 = 0 → ( ! ‘ 𝑛 ) = 1 ) |
| 11 | 10 | oveq2d | ⊢ ( 𝑛 = 0 → ( 1 / ( ! ‘ 𝑛 ) ) = ( 1 / 1 ) ) |
| 12 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 13 | 12 | div1i | ⊢ ( 1 / 1 ) = 1 |
| 14 | 11 13 | eqtrdi | ⊢ ( 𝑛 = 0 → ( 1 / ( ! ‘ 𝑛 ) ) = 1 ) |
| 15 | 1ex | ⊢ 1 ∈ V | |
| 16 | 14 2 15 | fvmpt | ⊢ ( 0 ∈ ℕ0 → ( 𝐺 ‘ 0 ) = 1 ) |
| 17 | 4 16 | mp1i | ⊢ ( ⊤ → ( 𝐺 ‘ 0 ) = 1 ) |
| 18 | 7 17 | seq1i | ⊢ ( ⊤ → ( seq 0 ( + , 𝐺 ) ‘ 0 ) = 1 ) |
| 19 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 20 | fveq2 | ⊢ ( 𝑛 = 1 → ( ! ‘ 𝑛 ) = ( ! ‘ 1 ) ) | |
| 21 | fac1 | ⊢ ( ! ‘ 1 ) = 1 | |
| 22 | 20 21 | eqtrdi | ⊢ ( 𝑛 = 1 → ( ! ‘ 𝑛 ) = 1 ) |
| 23 | 22 | oveq2d | ⊢ ( 𝑛 = 1 → ( 1 / ( ! ‘ 𝑛 ) ) = ( 1 / 1 ) ) |
| 24 | 23 13 | eqtrdi | ⊢ ( 𝑛 = 1 → ( 1 / ( ! ‘ 𝑛 ) ) = 1 ) |
| 25 | 24 2 15 | fvmpt | ⊢ ( 1 ∈ ℕ0 → ( 𝐺 ‘ 1 ) = 1 ) |
| 26 | 19 25 | mp1i | ⊢ ( ⊤ → ( 𝐺 ‘ 1 ) = 1 ) |
| 27 | 3 5 6 18 26 | seqp1d | ⊢ ( ⊤ → ( seq 0 ( + , 𝐺 ) ‘ 1 ) = ( 1 + 1 ) ) |
| 28 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 29 | 27 28 | eqtr4di | ⊢ ( ⊤ → ( seq 0 ( + , 𝐺 ) ‘ 1 ) = 2 ) |
| 30 | 19 | a1i | ⊢ ( ⊤ → 1 ∈ ℕ0 ) |
| 31 | nn0z | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) | |
| 32 | 1exp | ⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) | |
| 33 | 31 32 | syl | ⊢ ( 𝑛 ∈ ℕ0 → ( 1 ↑ 𝑛 ) = 1 ) |
| 34 | 33 | oveq1d | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) = ( 1 / ( ! ‘ 𝑛 ) ) ) |
| 35 | 34 | mpteq2ia | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ! ‘ 𝑛 ) ) ) |
| 36 | 2 35 | eqtr4i | ⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
| 37 | 36 | efcvg | ⊢ ( 1 ∈ ℂ → seq 0 ( + , 𝐺 ) ⇝ ( exp ‘ 1 ) ) |
| 38 | 12 37 | mp1i | ⊢ ( ⊤ → seq 0 ( + , 𝐺 ) ⇝ ( exp ‘ 1 ) ) |
| 39 | df-e | ⊢ e = ( exp ‘ 1 ) | |
| 40 | 38 39 | breqtrrdi | ⊢ ( ⊤ → seq 0 ( + , 𝐺 ) ⇝ e ) |
| 41 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑘 ) ) | |
| 42 | 41 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 1 / ( ! ‘ 𝑛 ) ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
| 43 | ovex | ⊢ ( 1 / ( ! ‘ 𝑘 ) ) ∈ V | |
| 44 | 42 2 43 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
| 45 | 44 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
| 46 | faccl | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) | |
| 47 | 46 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 48 | 47 | nnrecred | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 49 | 45 48 | eqeltrd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 50 | 47 | nnred | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
| 51 | 47 | nngt0d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 0 < ( ! ‘ 𝑘 ) ) |
| 52 | 1re | ⊢ 1 ∈ ℝ | |
| 53 | 0le1 | ⊢ 0 ≤ 1 | |
| 54 | divge0 | ⊢ ( ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ ( ( ! ‘ 𝑘 ) ∈ ℝ ∧ 0 < ( ! ‘ 𝑘 ) ) ) → 0 ≤ ( 1 / ( ! ‘ 𝑘 ) ) ) | |
| 55 | 52 53 54 | mpanl12 | ⊢ ( ( ( ! ‘ 𝑘 ) ∈ ℝ ∧ 0 < ( ! ‘ 𝑘 ) ) → 0 ≤ ( 1 / ( ! ‘ 𝑘 ) ) ) |
| 56 | 50 51 55 | syl2anc | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( 1 / ( ! ‘ 𝑘 ) ) ) |
| 57 | 56 45 | breqtrrd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 58 | 3 30 40 49 57 | climserle | ⊢ ( ⊤ → ( seq 0 ( + , 𝐺 ) ‘ 1 ) ≤ e ) |
| 59 | 29 58 | eqbrtrrd | ⊢ ( ⊤ → 2 ≤ e ) |
| 60 | 59 | mptru | ⊢ 2 ≤ e |
| 61 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 62 | 1zzd | ⊢ ( ⊤ → 1 ∈ ℤ ) | |
| 63 | 49 | recnd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 64 | 3 5 63 40 | clim2ser | ⊢ ( ⊤ → seq ( 0 + 1 ) ( + , 𝐺 ) ⇝ ( e − ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) ) |
| 65 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 66 | seqeq1 | ⊢ ( ( 0 + 1 ) = 1 → seq ( 0 + 1 ) ( + , 𝐺 ) = seq 1 ( + , 𝐺 ) ) | |
| 67 | 65 66 | ax-mp | ⊢ seq ( 0 + 1 ) ( + , 𝐺 ) = seq 1 ( + , 𝐺 ) |
| 68 | 18 | mptru | ⊢ ( seq 0 ( + , 𝐺 ) ‘ 0 ) = 1 |
| 69 | 68 | oveq2i | ⊢ ( e − ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) = ( e − 1 ) |
| 70 | 64 67 69 | 3brtr3g | ⊢ ( ⊤ → seq 1 ( + , 𝐺 ) ⇝ ( e − 1 ) ) |
| 71 | 2cnd | ⊢ ( ⊤ → 2 ∈ ℂ ) | |
| 72 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( ( 1 / 2 ) ↑ 𝑛 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) | |
| 73 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) | |
| 74 | ovex | ⊢ ( ( 1 / 2 ) ↑ 𝑘 ) ∈ V | |
| 75 | 72 73 74 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 76 | 75 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 77 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 78 | simpr | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 79 | reexpcl | ⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ) | |
| 80 | 77 78 79 | sylancr | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ) |
| 81 | 80 | recnd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℂ ) |
| 82 | 76 81 | eqeltrd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 83 | 1lt2 | ⊢ 1 < 2 | |
| 84 | 2re | ⊢ 2 ∈ ℝ | |
| 85 | 0le2 | ⊢ 0 ≤ 2 | |
| 86 | absid | ⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( abs ‘ 2 ) = 2 ) | |
| 87 | 84 85 86 | mp2an | ⊢ ( abs ‘ 2 ) = 2 |
| 88 | 83 87 | breqtrri | ⊢ 1 < ( abs ‘ 2 ) |
| 89 | 88 | a1i | ⊢ ( ⊤ → 1 < ( abs ‘ 2 ) ) |
| 90 | 71 89 76 | georeclim | ⊢ ( ⊤ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ ( 2 / ( 2 − 1 ) ) ) |
| 91 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 92 | 91 | oveq2i | ⊢ ( 2 / ( 2 − 1 ) ) = ( 2 / 1 ) |
| 93 | 2cn | ⊢ 2 ∈ ℂ | |
| 94 | 93 | div1i | ⊢ ( 2 / 1 ) = 2 |
| 95 | 92 94 | eqtri | ⊢ ( 2 / ( 2 − 1 ) ) = 2 |
| 96 | 90 95 | breqtrdi | ⊢ ( ⊤ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ 2 ) |
| 97 | 3 5 82 96 | clim2ser | ⊢ ( ⊤ → seq ( 0 + 1 ) ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ ( 2 − ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 0 ) ) ) |
| 98 | seqeq1 | ⊢ ( ( 0 + 1 ) = 1 → seq ( 0 + 1 ) ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ) | |
| 99 | 65 98 | ax-mp | ⊢ seq ( 0 + 1 ) ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) |
| 100 | oveq2 | ⊢ ( 𝑛 = 0 → ( ( 1 / 2 ) ↑ 𝑛 ) = ( ( 1 / 2 ) ↑ 0 ) ) | |
| 101 | ovex | ⊢ ( ( 1 / 2 ) ↑ 0 ) ∈ V | |
| 102 | 100 73 101 | fvmpt | ⊢ ( 0 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 0 ) = ( ( 1 / 2 ) ↑ 0 ) ) |
| 103 | 4 102 | ax-mp | ⊢ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 0 ) = ( ( 1 / 2 ) ↑ 0 ) |
| 104 | halfcn | ⊢ ( 1 / 2 ) ∈ ℂ | |
| 105 | exp0 | ⊢ ( ( 1 / 2 ) ∈ ℂ → ( ( 1 / 2 ) ↑ 0 ) = 1 ) | |
| 106 | 104 105 | ax-mp | ⊢ ( ( 1 / 2 ) ↑ 0 ) = 1 |
| 107 | 103 106 | eqtri | ⊢ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 0 ) = 1 |
| 108 | 107 | a1i | ⊢ ( ⊤ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 0 ) = 1 ) |
| 109 | 7 108 | seq1i | ⊢ ( ⊤ → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 0 ) = 1 ) |
| 110 | 109 | mptru | ⊢ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 0 ) = 1 |
| 111 | 110 | oveq2i | ⊢ ( 2 − ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 0 ) ) = ( 2 − 1 ) |
| 112 | 111 91 | eqtri | ⊢ ( 2 − ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 0 ) ) = 1 |
| 113 | 97 99 112 | 3brtr3g | ⊢ ( ⊤ → seq 1 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ 1 ) |
| 114 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 115 | 114 82 | sylan2 | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 116 | 72 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 2 · ( ( 1 / 2 ) ↑ 𝑛 ) ) = ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 117 | ovex | ⊢ ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ∈ V | |
| 118 | 116 1 117 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) = ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 119 | 118 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 120 | 114 76 | sylan2 | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 121 | 120 | oveq2d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 2 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) = ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 122 | 119 121 | eqtr4d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 2 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) ) |
| 123 | 61 62 71 113 115 122 | isermulc2 | ⊢ ( ⊤ → seq 1 ( + , 𝐹 ) ⇝ ( 2 · 1 ) ) |
| 124 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 125 | 123 124 | breqtrdi | ⊢ ( ⊤ → seq 1 ( + , 𝐹 ) ⇝ 2 ) |
| 126 | 114 49 | sylan2 | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 127 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ) → ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ∈ ℝ ) | |
| 128 | 84 80 127 | sylancr | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ∈ ℝ ) |
| 129 | 114 128 | sylan2 | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ∈ ℝ ) |
| 130 | 119 129 | eqeltrd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 131 | faclbnd2 | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 ↑ 𝑘 ) / 2 ) ≤ ( ! ‘ 𝑘 ) ) | |
| 132 | 131 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 ↑ 𝑘 ) / 2 ) ≤ ( ! ‘ 𝑘 ) ) |
| 133 | 2nn | ⊢ 2 ∈ ℕ | |
| 134 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) | |
| 135 | 133 78 134 | sylancr | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
| 136 | 135 | nnrpd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℝ+ ) |
| 137 | 136 | rphalfcld | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 ↑ 𝑘 ) / 2 ) ∈ ℝ+ ) |
| 138 | 47 | nnrpd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℝ+ ) |
| 139 | 137 138 | lerecd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 2 ↑ 𝑘 ) / 2 ) ≤ ( ! ‘ 𝑘 ) ↔ ( 1 / ( ! ‘ 𝑘 ) ) ≤ ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) ) ) |
| 140 | 132 139 | mpbid | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( ! ‘ 𝑘 ) ) ≤ ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) ) |
| 141 | 2cnd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 2 ∈ ℂ ) | |
| 142 | 135 | nncnd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℂ ) |
| 143 | 135 | nnne0d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ≠ 0 ) |
| 144 | 141 142 143 | divrecd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 / ( 2 ↑ 𝑘 ) ) = ( 2 · ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 145 | 2ne0 | ⊢ 2 ≠ 0 | |
| 146 | recdiv | ⊢ ( ( ( ( 2 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) = ( 2 / ( 2 ↑ 𝑘 ) ) ) | |
| 147 | 93 145 146 | mpanr12 | ⊢ ( ( ( 2 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ≠ 0 ) → ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) = ( 2 / ( 2 ↑ 𝑘 ) ) ) |
| 148 | 142 143 147 | syl2anc | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) = ( 2 / ( 2 ↑ 𝑘 ) ) ) |
| 149 | 145 | a1i | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 2 ≠ 0 ) |
| 150 | nn0z | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) | |
| 151 | 150 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℤ ) |
| 152 | 141 149 151 | exprecd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑘 ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 153 | 152 | oveq2d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) = ( 2 · ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 154 | 144 148 153 | 3eqtr4rd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) = ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) ) |
| 155 | 140 154 | breqtrrd | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( ! ‘ 𝑘 ) ) ≤ ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 156 | 114 155 | sylan2 | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / ( ! ‘ 𝑘 ) ) ≤ ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 157 | 114 45 | sylan2 | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
| 158 | 156 157 119 | 3brtr4d | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 159 | 61 62 70 125 126 130 158 | iserle | ⊢ ( ⊤ → ( e − 1 ) ≤ 2 ) |
| 160 | 159 | mptru | ⊢ ( e − 1 ) ≤ 2 |
| 161 | ere | ⊢ e ∈ ℝ | |
| 162 | 161 52 84 | lesubaddi | ⊢ ( ( e − 1 ) ≤ 2 ↔ e ≤ ( 2 + 1 ) ) |
| 163 | 160 162 | mpbi | ⊢ e ≤ ( 2 + 1 ) |
| 164 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 165 | 163 164 | breqtrri | ⊢ e ≤ 3 |
| 166 | 60 165 | pm3.2i | ⊢ ( 2 ≤ e ∧ e ≤ 3 ) |