This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of the limits of two infinite series. (Contributed by Paul Chapman, 12-Nov-2007) (Revised by Mario Carneiro, 3-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2ser.1 | |- Z = ( ZZ>= ` M ) |
|
| iserle.2 | |- ( ph -> M e. ZZ ) |
||
| iserle.4 | |- ( ph -> seq M ( + , F ) ~~> A ) |
||
| iserle.5 | |- ( ph -> seq M ( + , G ) ~~> B ) |
||
| iserle.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
||
| iserle.7 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
||
| iserle.8 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( G ` k ) ) |
||
| Assertion | iserle | |- ( ph -> A <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | iserle.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | iserle.4 | |- ( ph -> seq M ( + , F ) ~~> A ) |
|
| 4 | iserle.5 | |- ( ph -> seq M ( + , G ) ~~> B ) |
|
| 5 | iserle.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
|
| 6 | iserle.7 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
|
| 7 | iserle.8 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( G ` k ) ) |
|
| 8 | 1 2 5 | serfre | |- ( ph -> seq M ( + , F ) : Z --> RR ) |
| 9 | 8 | ffvelcdmda | |- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. RR ) |
| 10 | 1 2 6 | serfre | |- ( ph -> seq M ( + , G ) : Z --> RR ) |
| 11 | 10 | ffvelcdmda | |- ( ( ph /\ j e. Z ) -> ( seq M ( + , G ) ` j ) e. RR ) |
| 12 | simpr | |- ( ( ph /\ j e. Z ) -> j e. Z ) |
|
| 13 | 12 1 | eleqtrdi | |- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
| 14 | simpll | |- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ph ) |
|
| 15 | elfzuz | |- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
|
| 16 | 15 1 | eleqtrrdi | |- ( k e. ( M ... j ) -> k e. Z ) |
| 17 | 16 | adantl | |- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> k e. Z ) |
| 18 | 14 17 5 | syl2anc | |- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. RR ) |
| 19 | 14 17 6 | syl2anc | |- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( G ` k ) e. RR ) |
| 20 | 14 17 7 | syl2anc | |- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) <_ ( G ` k ) ) |
| 21 | 13 18 19 20 | serle | |- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) <_ ( seq M ( + , G ) ` j ) ) |
| 22 | 1 2 3 4 9 11 21 | climle | |- ( ph -> A <_ B ) |