This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is open, then B is open in A iff it is an open subset of A . (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restopn2 | |- ( ( J e. Top /\ A e. J ) -> ( B e. ( J |`t A ) <-> ( B e. J /\ B C_ A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni | |- ( B e. ( J |`t A ) -> B C_ U. ( J |`t A ) ) |
|
| 2 | elssuni | |- ( A e. J -> A C_ U. J ) |
|
| 3 | eqid | |- U. J = U. J |
|
| 4 | 3 | restuni | |- ( ( J e. Top /\ A C_ U. J ) -> A = U. ( J |`t A ) ) |
| 5 | 2 4 | sylan2 | |- ( ( J e. Top /\ A e. J ) -> A = U. ( J |`t A ) ) |
| 6 | 5 | sseq2d | |- ( ( J e. Top /\ A e. J ) -> ( B C_ A <-> B C_ U. ( J |`t A ) ) ) |
| 7 | 1 6 | imbitrrid | |- ( ( J e. Top /\ A e. J ) -> ( B e. ( J |`t A ) -> B C_ A ) ) |
| 8 | 7 | pm4.71rd | |- ( ( J e. Top /\ A e. J ) -> ( B e. ( J |`t A ) <-> ( B C_ A /\ B e. ( J |`t A ) ) ) ) |
| 9 | simpll | |- ( ( ( J e. Top /\ A e. J ) /\ B C_ A ) -> J e. Top ) |
|
| 10 | simplr | |- ( ( ( J e. Top /\ A e. J ) /\ B C_ A ) -> A e. J ) |
|
| 11 | ssidd | |- ( ( ( J e. Top /\ A e. J ) /\ B C_ A ) -> A C_ A ) |
|
| 12 | simpr | |- ( ( ( J e. Top /\ A e. J ) /\ B C_ A ) -> B C_ A ) |
|
| 13 | restopnb | |- ( ( ( J e. Top /\ A e. J ) /\ ( A e. J /\ A C_ A /\ B C_ A ) ) -> ( B e. J <-> B e. ( J |`t A ) ) ) |
|
| 14 | 9 10 10 11 12 13 | syl23anc | |- ( ( ( J e. Top /\ A e. J ) /\ B C_ A ) -> ( B e. J <-> B e. ( J |`t A ) ) ) |
| 15 | 14 | pm5.32da | |- ( ( J e. Top /\ A e. J ) -> ( ( B C_ A /\ B e. J ) <-> ( B C_ A /\ B e. ( J |`t A ) ) ) ) |
| 16 | 8 15 | bitr4d | |- ( ( J e. Top /\ A e. J ) -> ( B e. ( J |`t A ) <-> ( B C_ A /\ B e. J ) ) ) |
| 17 | 16 | biancomd | |- ( ( J e. Top /\ A e. J ) -> ( B e. ( J |`t A ) <-> ( B e. J /\ B C_ A ) ) ) |