This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "continuous domain" of log is an open set. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | logcn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| Assertion | logdmopn | |- D e. ( TopOpen ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| 2 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 3 | 2 | recld2 | |- RR e. ( Clsd ` ( TopOpen ` CCfld ) ) |
| 4 | 0re | |- 0 e. RR |
|
| 5 | iocmnfcld | |- ( 0 e. RR -> ( -oo (,] 0 ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
|
| 6 | 4 5 | ax-mp | |- ( -oo (,] 0 ) e. ( Clsd ` ( topGen ` ran (,) ) ) |
| 7 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 8 | 7 | fveq2i | |- ( Clsd ` ( topGen ` ran (,) ) ) = ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 9 | 6 8 | eleqtri | |- ( -oo (,] 0 ) e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 10 | restcldr | |- ( ( RR e. ( Clsd ` ( TopOpen ` CCfld ) ) /\ ( -oo (,] 0 ) e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t RR ) ) ) -> ( -oo (,] 0 ) e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
|
| 11 | 3 9 10 | mp2an | |- ( -oo (,] 0 ) e. ( Clsd ` ( TopOpen ` CCfld ) ) |
| 12 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 13 | 12 | cldopn | |- ( ( -oo (,] 0 ) e. ( Clsd ` ( TopOpen ` CCfld ) ) -> ( CC \ ( -oo (,] 0 ) ) e. ( TopOpen ` CCfld ) ) |
| 14 | 11 13 | ax-mp | |- ( CC \ ( -oo (,] 0 ) ) e. ( TopOpen ` CCfld ) |
| 15 | 1 14 | eqeltri | |- D e. ( TopOpen ` CCfld ) |