This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005) (Revised by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abslt | |- ( ( A e. RR /\ B e. RR ) -> ( ( abs ` A ) < B <-> ( -u B < A /\ A < B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( abs ` A ) < B ) -> A e. RR ) |
|
| 2 | 1 | renegcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( abs ` A ) < B ) -> -u A e. RR ) |
| 3 | 1 | recnd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( abs ` A ) < B ) -> A e. CC ) |
| 4 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 5 | 3 4 | syl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( abs ` A ) < B ) -> ( abs ` A ) e. RR ) |
| 6 | simplr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( abs ` A ) < B ) -> B e. RR ) |
|
| 7 | leabs | |- ( -u A e. RR -> -u A <_ ( abs ` -u A ) ) |
|
| 8 | 2 7 | syl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( abs ` A ) < B ) -> -u A <_ ( abs ` -u A ) ) |
| 9 | absneg | |- ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) ) |
|
| 10 | 3 9 | syl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( abs ` A ) < B ) -> ( abs ` -u A ) = ( abs ` A ) ) |
| 11 | 8 10 | breqtrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( abs ` A ) < B ) -> -u A <_ ( abs ` A ) ) |
| 12 | simpr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( abs ` A ) < B ) -> ( abs ` A ) < B ) |
|
| 13 | 2 5 6 11 12 | lelttrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( abs ` A ) < B ) -> -u A < B ) |
| 14 | leabs | |- ( A e. RR -> A <_ ( abs ` A ) ) |
|
| 15 | 14 | ad2antrr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( abs ` A ) < B ) -> A <_ ( abs ` A ) ) |
| 16 | 1 5 6 15 12 | lelttrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( abs ` A ) < B ) -> A < B ) |
| 17 | 13 16 | jca | |- ( ( ( A e. RR /\ B e. RR ) /\ ( abs ` A ) < B ) -> ( -u A < B /\ A < B ) ) |
| 18 | 17 | ex | |- ( ( A e. RR /\ B e. RR ) -> ( ( abs ` A ) < B -> ( -u A < B /\ A < B ) ) ) |
| 19 | absor | |- ( A e. RR -> ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) ) |
|
| 20 | 19 | adantr | |- ( ( A e. RR /\ B e. RR ) -> ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) ) |
| 21 | breq1 | |- ( ( abs ` A ) = A -> ( ( abs ` A ) < B <-> A < B ) ) |
|
| 22 | 21 | biimprd | |- ( ( abs ` A ) = A -> ( A < B -> ( abs ` A ) < B ) ) |
| 23 | breq1 | |- ( ( abs ` A ) = -u A -> ( ( abs ` A ) < B <-> -u A < B ) ) |
|
| 24 | 23 | biimprd | |- ( ( abs ` A ) = -u A -> ( -u A < B -> ( abs ` A ) < B ) ) |
| 25 | 22 24 | jaoa | |- ( ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) -> ( ( A < B /\ -u A < B ) -> ( abs ` A ) < B ) ) |
| 26 | 25 | ancomsd | |- ( ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) -> ( ( -u A < B /\ A < B ) -> ( abs ` A ) < B ) ) |
| 27 | 20 26 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( ( -u A < B /\ A < B ) -> ( abs ` A ) < B ) ) |
| 28 | 18 27 | impbid | |- ( ( A e. RR /\ B e. RR ) -> ( ( abs ` A ) < B <-> ( -u A < B /\ A < B ) ) ) |
| 29 | ltnegcon1 | |- ( ( A e. RR /\ B e. RR ) -> ( -u A < B <-> -u B < A ) ) |
|
| 30 | 29 | anbi1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( -u A < B /\ A < B ) <-> ( -u B < A /\ A < B ) ) ) |
| 31 | 28 30 | bitrd | |- ( ( A e. RR /\ B e. RR ) -> ( ( abs ` A ) < B <-> ( -u B < A /\ A < B ) ) ) |