This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnima | |- ( ( F e. ( J Cn K ) /\ A e. K ) -> ( `' F " A ) e. J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- U. J = U. J |
|
| 2 | eqid | |- U. K = U. K |
|
| 3 | 1 2 | iscn2 | |- ( F e. ( J Cn K ) <-> ( ( J e. Top /\ K e. Top ) /\ ( F : U. J --> U. K /\ A. x e. K ( `' F " x ) e. J ) ) ) |
| 4 | 3 | simprbi | |- ( F e. ( J Cn K ) -> ( F : U. J --> U. K /\ A. x e. K ( `' F " x ) e. J ) ) |
| 5 | 4 | simprd | |- ( F e. ( J Cn K ) -> A. x e. K ( `' F " x ) e. J ) |
| 6 | imaeq2 | |- ( x = A -> ( `' F " x ) = ( `' F " A ) ) |
|
| 7 | 6 | eleq1d | |- ( x = A -> ( ( `' F " x ) e. J <-> ( `' F " A ) e. J ) ) |
| 8 | 7 | rspccva | |- ( ( A. x e. K ( `' F " x ) e. J /\ A e. K ) -> ( `' F " A ) e. J ) |
| 9 | 5 8 | sylan | |- ( ( F e. ( J Cn K ) /\ A e. K ) -> ( `' F " A ) e. J ) |