This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of the natural logarithm function, also the principal domain of the exponential function. This allows to write the longer class expression as simply ran log . (Contributed by Paul Chapman, 21-Apr-2008) (Revised by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logrn | |- ran log = ( `' Im " ( -u _pi (,] _pi ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-log | |- log = `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
|
| 2 | 1 | rneqi | |- ran log = ran `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
| 3 | eqid | |- ( `' Im " ( -u _pi (,] _pi ) ) = ( `' Im " ( -u _pi (,] _pi ) ) |
|
| 4 | 3 | eff1o | |- ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( `' Im " ( -u _pi (,] _pi ) ) -1-1-onto-> ( CC \ { 0 } ) |
| 5 | f1ocnv | |- ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( `' Im " ( -u _pi (,] _pi ) ) -1-1-onto-> ( CC \ { 0 } ) -> `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( CC \ { 0 } ) -1-1-onto-> ( `' Im " ( -u _pi (,] _pi ) ) ) |
|
| 6 | 4 5 | ax-mp | |- `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( CC \ { 0 } ) -1-1-onto-> ( `' Im " ( -u _pi (,] _pi ) ) |
| 7 | f1ofo | |- ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( CC \ { 0 } ) -1-1-onto-> ( `' Im " ( -u _pi (,] _pi ) ) -> `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( CC \ { 0 } ) -onto-> ( `' Im " ( -u _pi (,] _pi ) ) ) |
|
| 8 | forn | |- ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( CC \ { 0 } ) -onto-> ( `' Im " ( -u _pi (,] _pi ) ) -> ran `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) = ( `' Im " ( -u _pi (,] _pi ) ) ) |
|
| 9 | 6 7 8 | mp2b | |- ran `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) = ( `' Im " ( -u _pi (,] _pi ) ) |
| 10 | 2 9 | eqtri | |- ran log = ( `' Im " ( -u _pi (,] _pi ) ) |