This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of relation. Exercise 2 of TakeutiZaring p. 25. (Contributed by NM, 29-Dec-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrel2 | |- ( Rel R <-> `' `' R = R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' `' R |
|
| 2 | vex | |- x e. _V |
|
| 3 | vex | |- y e. _V |
|
| 4 | 2 3 | opelcnv | |- ( <. x , y >. e. `' `' R <-> <. y , x >. e. `' R ) |
| 5 | 3 2 | opelcnv | |- ( <. y , x >. e. `' R <-> <. x , y >. e. R ) |
| 6 | 4 5 | bitri | |- ( <. x , y >. e. `' `' R <-> <. x , y >. e. R ) |
| 7 | 6 | eqrelriv | |- ( ( Rel `' `' R /\ Rel R ) -> `' `' R = R ) |
| 8 | 1 7 | mpan | |- ( Rel R -> `' `' R = R ) |
| 9 | releq | |- ( `' `' R = R -> ( Rel `' `' R <-> Rel R ) ) |
|
| 10 | 1 9 | mpbii | |- ( `' `' R = R -> Rel R ) |
| 11 | 8 10 | impbii | |- ( Rel R <-> `' `' R = R ) |