This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential map is an open map. (Contributed by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efopn.j | |- J = ( TopOpen ` CCfld ) |
|
| Assertion | efopn | |- ( S e. J -> ( exp " S ) e. J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efopn.j | |- J = ( TopOpen ` CCfld ) |
|
| 2 | 1 | cnfldtopon | |- J e. ( TopOn ` CC ) |
| 3 | toponss | |- ( ( J e. ( TopOn ` CC ) /\ S e. J ) -> S C_ CC ) |
|
| 4 | 2 3 | mpan | |- ( S e. J -> S C_ CC ) |
| 5 | 4 | sselda | |- ( ( S e. J /\ x e. S ) -> x e. CC ) |
| 6 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 7 | pirp | |- _pi e. RR+ |
|
| 8 | 1 | cnfldtopn | |- J = ( MetOpen ` ( abs o. - ) ) |
| 9 | 8 | mopni3 | |- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ S e. J /\ x e. S ) /\ _pi e. RR+ ) -> E. r e. RR+ ( r < _pi /\ ( x ( ball ` ( abs o. - ) ) r ) C_ S ) ) |
| 10 | 7 9 | mpan2 | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ S e. J /\ x e. S ) -> E. r e. RR+ ( r < _pi /\ ( x ( ball ` ( abs o. - ) ) r ) C_ S ) ) |
| 11 | 6 10 | mp3an1 | |- ( ( S e. J /\ x e. S ) -> E. r e. RR+ ( r < _pi /\ ( x ( ball ` ( abs o. - ) ) r ) C_ S ) ) |
| 12 | imass2 | |- ( ( x ( ball ` ( abs o. - ) ) r ) C_ S -> ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) C_ ( exp " S ) ) |
|
| 13 | imassrn | |- ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) C_ ran exp |
|
| 14 | eff | |- exp : CC --> CC |
|
| 15 | frn | |- ( exp : CC --> CC -> ran exp C_ CC ) |
|
| 16 | 14 15 | ax-mp | |- ran exp C_ CC |
| 17 | 13 16 | sstri | |- ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) C_ CC |
| 18 | sseqin2 | |- ( ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) C_ CC <-> ( CC i^i ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) ) = ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) ) |
|
| 19 | 17 18 | mpbi | |- ( CC i^i ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) ) = ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) |
| 20 | rpxr | |- ( r e. RR+ -> r e. RR* ) |
|
| 21 | blssm | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ x e. CC /\ r e. RR* ) -> ( x ( ball ` ( abs o. - ) ) r ) C_ CC ) |
|
| 22 | 6 21 | mp3an1 | |- ( ( x e. CC /\ r e. RR* ) -> ( x ( ball ` ( abs o. - ) ) r ) C_ CC ) |
| 23 | 20 22 | sylan2 | |- ( ( x e. CC /\ r e. RR+ ) -> ( x ( ball ` ( abs o. - ) ) r ) C_ CC ) |
| 24 | 23 | ad2antrr | |- ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) -> ( x ( ball ` ( abs o. - ) ) r ) C_ CC ) |
| 25 | 24 | sselda | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> y e. CC ) |
| 26 | simp-4l | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> x e. CC ) |
|
| 27 | 25 26 | subcld | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> ( y - x ) e. CC ) |
| 28 | 27 | subid1d | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> ( ( y - x ) - 0 ) = ( y - x ) ) |
| 29 | 28 | fveq2d | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> ( abs ` ( ( y - x ) - 0 ) ) = ( abs ` ( y - x ) ) ) |
| 30 | 0cn | |- 0 e. CC |
|
| 31 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 32 | 31 | cnmetdval | |- ( ( ( y - x ) e. CC /\ 0 e. CC ) -> ( ( y - x ) ( abs o. - ) 0 ) = ( abs ` ( ( y - x ) - 0 ) ) ) |
| 33 | 27 30 32 | sylancl | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> ( ( y - x ) ( abs o. - ) 0 ) = ( abs ` ( ( y - x ) - 0 ) ) ) |
| 34 | 31 | cnmetdval | |- ( ( y e. CC /\ x e. CC ) -> ( y ( abs o. - ) x ) = ( abs ` ( y - x ) ) ) |
| 35 | 25 26 34 | syl2anc | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> ( y ( abs o. - ) x ) = ( abs ` ( y - x ) ) ) |
| 36 | 29 33 35 | 3eqtr4d | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> ( ( y - x ) ( abs o. - ) 0 ) = ( y ( abs o. - ) x ) ) |
| 37 | simpr | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> y e. ( x ( ball ` ( abs o. - ) ) r ) ) |
|
| 38 | 6 | a1i | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 39 | simpllr | |- ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) -> r e. RR+ ) |
|
| 40 | 39 | adantr | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> r e. RR+ ) |
| 41 | 40 | rpxrd | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> r e. RR* ) |
| 42 | elbl3 | |- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ r e. RR* ) /\ ( x e. CC /\ y e. CC ) ) -> ( y e. ( x ( ball ` ( abs o. - ) ) r ) <-> ( y ( abs o. - ) x ) < r ) ) |
|
| 43 | 38 41 26 25 42 | syl22anc | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> ( y e. ( x ( ball ` ( abs o. - ) ) r ) <-> ( y ( abs o. - ) x ) < r ) ) |
| 44 | 37 43 | mpbid | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> ( y ( abs o. - ) x ) < r ) |
| 45 | 36 44 | eqbrtrd | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> ( ( y - x ) ( abs o. - ) 0 ) < r ) |
| 46 | 0cnd | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> 0 e. CC ) |
|
| 47 | elbl3 | |- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ r e. RR* ) /\ ( 0 e. CC /\ ( y - x ) e. CC ) ) -> ( ( y - x ) e. ( 0 ( ball ` ( abs o. - ) ) r ) <-> ( ( y - x ) ( abs o. - ) 0 ) < r ) ) |
|
| 48 | 38 41 46 27 47 | syl22anc | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> ( ( y - x ) e. ( 0 ( ball ` ( abs o. - ) ) r ) <-> ( ( y - x ) ( abs o. - ) 0 ) < r ) ) |
| 49 | 45 48 | mpbird | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> ( y - x ) e. ( 0 ( ball ` ( abs o. - ) ) r ) ) |
| 50 | efsub | |- ( ( y e. CC /\ x e. CC ) -> ( exp ` ( y - x ) ) = ( ( exp ` y ) / ( exp ` x ) ) ) |
|
| 51 | 25 26 50 | syl2anc | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> ( exp ` ( y - x ) ) = ( ( exp ` y ) / ( exp ` x ) ) ) |
| 52 | fveqeq2 | |- ( w = ( y - x ) -> ( ( exp ` w ) = ( ( exp ` y ) / ( exp ` x ) ) <-> ( exp ` ( y - x ) ) = ( ( exp ` y ) / ( exp ` x ) ) ) ) |
|
| 53 | 52 | rspcev | |- ( ( ( y - x ) e. ( 0 ( ball ` ( abs o. - ) ) r ) /\ ( exp ` ( y - x ) ) = ( ( exp ` y ) / ( exp ` x ) ) ) -> E. w e. ( 0 ( ball ` ( abs o. - ) ) r ) ( exp ` w ) = ( ( exp ` y ) / ( exp ` x ) ) ) |
| 54 | 49 51 53 | syl2anc | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> E. w e. ( 0 ( ball ` ( abs o. - ) ) r ) ( exp ` w ) = ( ( exp ` y ) / ( exp ` x ) ) ) |
| 55 | oveq1 | |- ( ( exp ` y ) = z -> ( ( exp ` y ) / ( exp ` x ) ) = ( z / ( exp ` x ) ) ) |
|
| 56 | 55 | eqeq2d | |- ( ( exp ` y ) = z -> ( ( exp ` w ) = ( ( exp ` y ) / ( exp ` x ) ) <-> ( exp ` w ) = ( z / ( exp ` x ) ) ) ) |
| 57 | 56 | rexbidv | |- ( ( exp ` y ) = z -> ( E. w e. ( 0 ( ball ` ( abs o. - ) ) r ) ( exp ` w ) = ( ( exp ` y ) / ( exp ` x ) ) <-> E. w e. ( 0 ( ball ` ( abs o. - ) ) r ) ( exp ` w ) = ( z / ( exp ` x ) ) ) ) |
| 58 | 54 57 | syl5ibcom | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ y e. ( x ( ball ` ( abs o. - ) ) r ) ) -> ( ( exp ` y ) = z -> E. w e. ( 0 ( ball ` ( abs o. - ) ) r ) ( exp ` w ) = ( z / ( exp ` x ) ) ) ) |
| 59 | 58 | rexlimdva | |- ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) -> ( E. y e. ( x ( ball ` ( abs o. - ) ) r ) ( exp ` y ) = z -> E. w e. ( 0 ( ball ` ( abs o. - ) ) r ) ( exp ` w ) = ( z / ( exp ` x ) ) ) ) |
| 60 | eqcom | |- ( ( exp ` w ) = ( z / ( exp ` x ) ) <-> ( z / ( exp ` x ) ) = ( exp ` w ) ) |
|
| 61 | simplr | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> z e. CC ) |
|
| 62 | simp-4l | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> x e. CC ) |
|
| 63 | efcl | |- ( x e. CC -> ( exp ` x ) e. CC ) |
|
| 64 | 62 63 | syl | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( exp ` x ) e. CC ) |
| 65 | 39 | rpxrd | |- ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) -> r e. RR* ) |
| 66 | blssm | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ r e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) r ) C_ CC ) |
|
| 67 | 6 30 65 66 | mp3an12i | |- ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) -> ( 0 ( ball ` ( abs o. - ) ) r ) C_ CC ) |
| 68 | 67 | sselda | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> w e. CC ) |
| 69 | efcl | |- ( w e. CC -> ( exp ` w ) e. CC ) |
|
| 70 | 68 69 | syl | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( exp ` w ) e. CC ) |
| 71 | efne0 | |- ( x e. CC -> ( exp ` x ) =/= 0 ) |
|
| 72 | 62 71 | syl | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( exp ` x ) =/= 0 ) |
| 73 | 61 64 70 72 | divmuld | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( ( z / ( exp ` x ) ) = ( exp ` w ) <-> ( ( exp ` x ) x. ( exp ` w ) ) = z ) ) |
| 74 | 60 73 | bitrid | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( ( exp ` w ) = ( z / ( exp ` x ) ) <-> ( ( exp ` x ) x. ( exp ` w ) ) = z ) ) |
| 75 | 62 68 | pncan2d | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( ( x + w ) - x ) = w ) |
| 76 | 68 | subid1d | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( w - 0 ) = w ) |
| 77 | 75 76 | eqtr4d | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( ( x + w ) - x ) = ( w - 0 ) ) |
| 78 | 77 | fveq2d | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( abs ` ( ( x + w ) - x ) ) = ( abs ` ( w - 0 ) ) ) |
| 79 | 62 68 | addcld | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( x + w ) e. CC ) |
| 80 | 31 | cnmetdval | |- ( ( ( x + w ) e. CC /\ x e. CC ) -> ( ( x + w ) ( abs o. - ) x ) = ( abs ` ( ( x + w ) - x ) ) ) |
| 81 | 79 62 80 | syl2anc | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( ( x + w ) ( abs o. - ) x ) = ( abs ` ( ( x + w ) - x ) ) ) |
| 82 | 31 | cnmetdval | |- ( ( w e. CC /\ 0 e. CC ) -> ( w ( abs o. - ) 0 ) = ( abs ` ( w - 0 ) ) ) |
| 83 | 68 30 82 | sylancl | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( w ( abs o. - ) 0 ) = ( abs ` ( w - 0 ) ) ) |
| 84 | 78 81 83 | 3eqtr4d | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( ( x + w ) ( abs o. - ) x ) = ( w ( abs o. - ) 0 ) ) |
| 85 | simpr | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) |
|
| 86 | 6 | a1i | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 87 | 39 | adantr | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> r e. RR+ ) |
| 88 | 87 | rpxrd | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> r e. RR* ) |
| 89 | 0cnd | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> 0 e. CC ) |
|
| 90 | elbl3 | |- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ r e. RR* ) /\ ( 0 e. CC /\ w e. CC ) ) -> ( w e. ( 0 ( ball ` ( abs o. - ) ) r ) <-> ( w ( abs o. - ) 0 ) < r ) ) |
|
| 91 | 86 88 89 68 90 | syl22anc | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( w e. ( 0 ( ball ` ( abs o. - ) ) r ) <-> ( w ( abs o. - ) 0 ) < r ) ) |
| 92 | 85 91 | mpbid | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( w ( abs o. - ) 0 ) < r ) |
| 93 | 84 92 | eqbrtrd | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( ( x + w ) ( abs o. - ) x ) < r ) |
| 94 | elbl3 | |- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ r e. RR* ) /\ ( x e. CC /\ ( x + w ) e. CC ) ) -> ( ( x + w ) e. ( x ( ball ` ( abs o. - ) ) r ) <-> ( ( x + w ) ( abs o. - ) x ) < r ) ) |
|
| 95 | 86 88 62 79 94 | syl22anc | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( ( x + w ) e. ( x ( ball ` ( abs o. - ) ) r ) <-> ( ( x + w ) ( abs o. - ) x ) < r ) ) |
| 96 | 93 95 | mpbird | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( x + w ) e. ( x ( ball ` ( abs o. - ) ) r ) ) |
| 97 | efadd | |- ( ( x e. CC /\ w e. CC ) -> ( exp ` ( x + w ) ) = ( ( exp ` x ) x. ( exp ` w ) ) ) |
|
| 98 | 62 68 97 | syl2anc | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( exp ` ( x + w ) ) = ( ( exp ` x ) x. ( exp ` w ) ) ) |
| 99 | fveqeq2 | |- ( y = ( x + w ) -> ( ( exp ` y ) = ( ( exp ` x ) x. ( exp ` w ) ) <-> ( exp ` ( x + w ) ) = ( ( exp ` x ) x. ( exp ` w ) ) ) ) |
|
| 100 | 99 | rspcev | |- ( ( ( x + w ) e. ( x ( ball ` ( abs o. - ) ) r ) /\ ( exp ` ( x + w ) ) = ( ( exp ` x ) x. ( exp ` w ) ) ) -> E. y e. ( x ( ball ` ( abs o. - ) ) r ) ( exp ` y ) = ( ( exp ` x ) x. ( exp ` w ) ) ) |
| 101 | 96 98 100 | syl2anc | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> E. y e. ( x ( ball ` ( abs o. - ) ) r ) ( exp ` y ) = ( ( exp ` x ) x. ( exp ` w ) ) ) |
| 102 | eqeq2 | |- ( ( ( exp ` x ) x. ( exp ` w ) ) = z -> ( ( exp ` y ) = ( ( exp ` x ) x. ( exp ` w ) ) <-> ( exp ` y ) = z ) ) |
|
| 103 | 102 | rexbidv | |- ( ( ( exp ` x ) x. ( exp ` w ) ) = z -> ( E. y e. ( x ( ball ` ( abs o. - ) ) r ) ( exp ` y ) = ( ( exp ` x ) x. ( exp ` w ) ) <-> E. y e. ( x ( ball ` ( abs o. - ) ) r ) ( exp ` y ) = z ) ) |
| 104 | 101 103 | syl5ibcom | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( ( ( exp ` x ) x. ( exp ` w ) ) = z -> E. y e. ( x ( ball ` ( abs o. - ) ) r ) ( exp ` y ) = z ) ) |
| 105 | 74 104 | sylbid | |- ( ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) /\ w e. ( 0 ( ball ` ( abs o. - ) ) r ) ) -> ( ( exp ` w ) = ( z / ( exp ` x ) ) -> E. y e. ( x ( ball ` ( abs o. - ) ) r ) ( exp ` y ) = z ) ) |
| 106 | 105 | rexlimdva | |- ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) -> ( E. w e. ( 0 ( ball ` ( abs o. - ) ) r ) ( exp ` w ) = ( z / ( exp ` x ) ) -> E. y e. ( x ( ball ` ( abs o. - ) ) r ) ( exp ` y ) = z ) ) |
| 107 | 59 106 | impbid | |- ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) -> ( E. y e. ( x ( ball ` ( abs o. - ) ) r ) ( exp ` y ) = z <-> E. w e. ( 0 ( ball ` ( abs o. - ) ) r ) ( exp ` w ) = ( z / ( exp ` x ) ) ) ) |
| 108 | ffn | |- ( exp : CC --> CC -> exp Fn CC ) |
|
| 109 | 14 108 | ax-mp | |- exp Fn CC |
| 110 | fvelimab | |- ( ( exp Fn CC /\ ( x ( ball ` ( abs o. - ) ) r ) C_ CC ) -> ( z e. ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) <-> E. y e. ( x ( ball ` ( abs o. - ) ) r ) ( exp ` y ) = z ) ) |
|
| 111 | 109 24 110 | sylancr | |- ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) -> ( z e. ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) <-> E. y e. ( x ( ball ` ( abs o. - ) ) r ) ( exp ` y ) = z ) ) |
| 112 | fvelimab | |- ( ( exp Fn CC /\ ( 0 ( ball ` ( abs o. - ) ) r ) C_ CC ) -> ( ( z / ( exp ` x ) ) e. ( exp " ( 0 ( ball ` ( abs o. - ) ) r ) ) <-> E. w e. ( 0 ( ball ` ( abs o. - ) ) r ) ( exp ` w ) = ( z / ( exp ` x ) ) ) ) |
|
| 113 | 109 67 112 | sylancr | |- ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) -> ( ( z / ( exp ` x ) ) e. ( exp " ( 0 ( ball ` ( abs o. - ) ) r ) ) <-> E. w e. ( 0 ( ball ` ( abs o. - ) ) r ) ( exp ` w ) = ( z / ( exp ` x ) ) ) ) |
| 114 | 107 111 113 | 3bitr4d | |- ( ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) /\ z e. CC ) -> ( z e. ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) <-> ( z / ( exp ` x ) ) e. ( exp " ( 0 ( ball ` ( abs o. - ) ) r ) ) ) ) |
| 115 | 114 | rabbi2dva | |- ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) -> ( CC i^i ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) ) = { z e. CC | ( z / ( exp ` x ) ) e. ( exp " ( 0 ( ball ` ( abs o. - ) ) r ) ) } ) |
| 116 | 19 115 | eqtr3id | |- ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) -> ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) = { z e. CC | ( z / ( exp ` x ) ) e. ( exp " ( 0 ( ball ` ( abs o. - ) ) r ) ) } ) |
| 117 | eqid | |- ( z e. CC |-> ( z / ( exp ` x ) ) ) = ( z e. CC |-> ( z / ( exp ` x ) ) ) |
|
| 118 | 117 | mptpreima | |- ( `' ( z e. CC |-> ( z / ( exp ` x ) ) ) " ( exp " ( 0 ( ball ` ( abs o. - ) ) r ) ) ) = { z e. CC | ( z / ( exp ` x ) ) e. ( exp " ( 0 ( ball ` ( abs o. - ) ) r ) ) } |
| 119 | 116 118 | eqtr4di | |- ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) -> ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) = ( `' ( z e. CC |-> ( z / ( exp ` x ) ) ) " ( exp " ( 0 ( ball ` ( abs o. - ) ) r ) ) ) ) |
| 120 | 63 | ad2antrr | |- ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) -> ( exp ` x ) e. CC ) |
| 121 | 71 | ad2antrr | |- ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) -> ( exp ` x ) =/= 0 ) |
| 122 | 117 | divccncf | |- ( ( ( exp ` x ) e. CC /\ ( exp ` x ) =/= 0 ) -> ( z e. CC |-> ( z / ( exp ` x ) ) ) e. ( CC -cn-> CC ) ) |
| 123 | 120 121 122 | syl2anc | |- ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) -> ( z e. CC |-> ( z / ( exp ` x ) ) ) e. ( CC -cn-> CC ) ) |
| 124 | 1 | cncfcn1 | |- ( CC -cn-> CC ) = ( J Cn J ) |
| 125 | 123 124 | eleqtrdi | |- ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) -> ( z e. CC |-> ( z / ( exp ` x ) ) ) e. ( J Cn J ) ) |
| 126 | 1 | efopnlem2 | |- ( ( r e. RR+ /\ r < _pi ) -> ( exp " ( 0 ( ball ` ( abs o. - ) ) r ) ) e. J ) |
| 127 | 126 | adantll | |- ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) -> ( exp " ( 0 ( ball ` ( abs o. - ) ) r ) ) e. J ) |
| 128 | cnima | |- ( ( ( z e. CC |-> ( z / ( exp ` x ) ) ) e. ( J Cn J ) /\ ( exp " ( 0 ( ball ` ( abs o. - ) ) r ) ) e. J ) -> ( `' ( z e. CC |-> ( z / ( exp ` x ) ) ) " ( exp " ( 0 ( ball ` ( abs o. - ) ) r ) ) ) e. J ) |
|
| 129 | 125 127 128 | syl2anc | |- ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) -> ( `' ( z e. CC |-> ( z / ( exp ` x ) ) ) " ( exp " ( 0 ( ball ` ( abs o. - ) ) r ) ) ) e. J ) |
| 130 | 119 129 | eqeltrd | |- ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) -> ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) e. J ) |
| 131 | blcntr | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ x e. CC /\ r e. RR+ ) -> x e. ( x ( ball ` ( abs o. - ) ) r ) ) |
|
| 132 | 6 131 | mp3an1 | |- ( ( x e. CC /\ r e. RR+ ) -> x e. ( x ( ball ` ( abs o. - ) ) r ) ) |
| 133 | ffun | |- ( exp : CC --> CC -> Fun exp ) |
|
| 134 | 14 133 | ax-mp | |- Fun exp |
| 135 | 14 | fdmi | |- dom exp = CC |
| 136 | 23 135 | sseqtrrdi | |- ( ( x e. CC /\ r e. RR+ ) -> ( x ( ball ` ( abs o. - ) ) r ) C_ dom exp ) |
| 137 | funfvima2 | |- ( ( Fun exp /\ ( x ( ball ` ( abs o. - ) ) r ) C_ dom exp ) -> ( x e. ( x ( ball ` ( abs o. - ) ) r ) -> ( exp ` x ) e. ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) ) ) |
|
| 138 | 134 136 137 | sylancr | |- ( ( x e. CC /\ r e. RR+ ) -> ( x e. ( x ( ball ` ( abs o. - ) ) r ) -> ( exp ` x ) e. ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) ) ) |
| 139 | 132 138 | mpd | |- ( ( x e. CC /\ r e. RR+ ) -> ( exp ` x ) e. ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) ) |
| 140 | 139 | adantr | |- ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) -> ( exp ` x ) e. ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) ) |
| 141 | eleq2 | |- ( y = ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) -> ( ( exp ` x ) e. y <-> ( exp ` x ) e. ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) ) ) |
|
| 142 | sseq1 | |- ( y = ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) -> ( y C_ ( exp " S ) <-> ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) C_ ( exp " S ) ) ) |
|
| 143 | 141 142 | anbi12d | |- ( y = ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) -> ( ( ( exp ` x ) e. y /\ y C_ ( exp " S ) ) <-> ( ( exp ` x ) e. ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) /\ ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) C_ ( exp " S ) ) ) ) |
| 144 | 143 | rspcev | |- ( ( ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) e. J /\ ( ( exp ` x ) e. ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) /\ ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) C_ ( exp " S ) ) ) -> E. y e. J ( ( exp ` x ) e. y /\ y C_ ( exp " S ) ) ) |
| 145 | 144 | expr | |- ( ( ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) e. J /\ ( exp ` x ) e. ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) ) -> ( ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) C_ ( exp " S ) -> E. y e. J ( ( exp ` x ) e. y /\ y C_ ( exp " S ) ) ) ) |
| 146 | 130 140 145 | syl2anc | |- ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) -> ( ( exp " ( x ( ball ` ( abs o. - ) ) r ) ) C_ ( exp " S ) -> E. y e. J ( ( exp ` x ) e. y /\ y C_ ( exp " S ) ) ) ) |
| 147 | 12 146 | syl5 | |- ( ( ( x e. CC /\ r e. RR+ ) /\ r < _pi ) -> ( ( x ( ball ` ( abs o. - ) ) r ) C_ S -> E. y e. J ( ( exp ` x ) e. y /\ y C_ ( exp " S ) ) ) ) |
| 148 | 147 | expimpd | |- ( ( x e. CC /\ r e. RR+ ) -> ( ( r < _pi /\ ( x ( ball ` ( abs o. - ) ) r ) C_ S ) -> E. y e. J ( ( exp ` x ) e. y /\ y C_ ( exp " S ) ) ) ) |
| 149 | 148 | rexlimdva | |- ( x e. CC -> ( E. r e. RR+ ( r < _pi /\ ( x ( ball ` ( abs o. - ) ) r ) C_ S ) -> E. y e. J ( ( exp ` x ) e. y /\ y C_ ( exp " S ) ) ) ) |
| 150 | 5 11 149 | sylc | |- ( ( S e. J /\ x e. S ) -> E. y e. J ( ( exp ` x ) e. y /\ y C_ ( exp " S ) ) ) |
| 151 | 150 | ralrimiva | |- ( S e. J -> A. x e. S E. y e. J ( ( exp ` x ) e. y /\ y C_ ( exp " S ) ) ) |
| 152 | eleq1 | |- ( z = ( exp ` x ) -> ( z e. y <-> ( exp ` x ) e. y ) ) |
|
| 153 | 152 | anbi1d | |- ( z = ( exp ` x ) -> ( ( z e. y /\ y C_ ( exp " S ) ) <-> ( ( exp ` x ) e. y /\ y C_ ( exp " S ) ) ) ) |
| 154 | 153 | rexbidv | |- ( z = ( exp ` x ) -> ( E. y e. J ( z e. y /\ y C_ ( exp " S ) ) <-> E. y e. J ( ( exp ` x ) e. y /\ y C_ ( exp " S ) ) ) ) |
| 155 | 154 | ralima | |- ( ( exp Fn CC /\ S C_ CC ) -> ( A. z e. ( exp " S ) E. y e. J ( z e. y /\ y C_ ( exp " S ) ) <-> A. x e. S E. y e. J ( ( exp ` x ) e. y /\ y C_ ( exp " S ) ) ) ) |
| 156 | 109 4 155 | sylancr | |- ( S e. J -> ( A. z e. ( exp " S ) E. y e. J ( z e. y /\ y C_ ( exp " S ) ) <-> A. x e. S E. y e. J ( ( exp ` x ) e. y /\ y C_ ( exp " S ) ) ) ) |
| 157 | 151 156 | mpbird | |- ( S e. J -> A. z e. ( exp " S ) E. y e. J ( z e. y /\ y C_ ( exp " S ) ) ) |
| 158 | 1 | cnfldtop | |- J e. Top |
| 159 | eltop2 | |- ( J e. Top -> ( ( exp " S ) e. J <-> A. z e. ( exp " S ) E. y e. J ( z e. y /\ y C_ ( exp " S ) ) ) ) |
|
| 160 | 158 159 | ax-mp | |- ( ( exp " S ) e. J <-> A. z e. ( exp " S ) E. y e. J ( z e. y /\ y C_ ( exp " S ) ) ) |
| 161 | 157 160 | sylibr | |- ( S e. J -> ( exp " S ) e. J ) |