This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| Assertion | efginvrel2 | |- ( A e. W -> ( A ++ ( M o. ( reverse ` A ) ) ) .~ (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | fviss | |- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
|
| 6 | 1 5 | eqsstri | |- W C_ Word ( I X. 2o ) |
| 7 | 6 | sseli | |- ( A e. W -> A e. Word ( I X. 2o ) ) |
| 8 | id | |- ( c = (/) -> c = (/) ) |
|
| 9 | fveq2 | |- ( c = (/) -> ( reverse ` c ) = ( reverse ` (/) ) ) |
|
| 10 | rev0 | |- ( reverse ` (/) ) = (/) |
|
| 11 | 9 10 | eqtrdi | |- ( c = (/) -> ( reverse ` c ) = (/) ) |
| 12 | 11 | coeq2d | |- ( c = (/) -> ( M o. ( reverse ` c ) ) = ( M o. (/) ) ) |
| 13 | co02 | |- ( M o. (/) ) = (/) |
|
| 14 | 12 13 | eqtrdi | |- ( c = (/) -> ( M o. ( reverse ` c ) ) = (/) ) |
| 15 | 8 14 | oveq12d | |- ( c = (/) -> ( c ++ ( M o. ( reverse ` c ) ) ) = ( (/) ++ (/) ) ) |
| 16 | 15 | breq1d | |- ( c = (/) -> ( ( c ++ ( M o. ( reverse ` c ) ) ) .~ (/) <-> ( (/) ++ (/) ) .~ (/) ) ) |
| 17 | 16 | imbi2d | |- ( c = (/) -> ( ( A e. W -> ( c ++ ( M o. ( reverse ` c ) ) ) .~ (/) ) <-> ( A e. W -> ( (/) ++ (/) ) .~ (/) ) ) ) |
| 18 | id | |- ( c = a -> c = a ) |
|
| 19 | fveq2 | |- ( c = a -> ( reverse ` c ) = ( reverse ` a ) ) |
|
| 20 | 19 | coeq2d | |- ( c = a -> ( M o. ( reverse ` c ) ) = ( M o. ( reverse ` a ) ) ) |
| 21 | 18 20 | oveq12d | |- ( c = a -> ( c ++ ( M o. ( reverse ` c ) ) ) = ( a ++ ( M o. ( reverse ` a ) ) ) ) |
| 22 | 21 | breq1d | |- ( c = a -> ( ( c ++ ( M o. ( reverse ` c ) ) ) .~ (/) <-> ( a ++ ( M o. ( reverse ` a ) ) ) .~ (/) ) ) |
| 23 | 22 | imbi2d | |- ( c = a -> ( ( A e. W -> ( c ++ ( M o. ( reverse ` c ) ) ) .~ (/) ) <-> ( A e. W -> ( a ++ ( M o. ( reverse ` a ) ) ) .~ (/) ) ) ) |
| 24 | id | |- ( c = ( a ++ <" b "> ) -> c = ( a ++ <" b "> ) ) |
|
| 25 | fveq2 | |- ( c = ( a ++ <" b "> ) -> ( reverse ` c ) = ( reverse ` ( a ++ <" b "> ) ) ) |
|
| 26 | 25 | coeq2d | |- ( c = ( a ++ <" b "> ) -> ( M o. ( reverse ` c ) ) = ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) |
| 27 | 24 26 | oveq12d | |- ( c = ( a ++ <" b "> ) -> ( c ++ ( M o. ( reverse ` c ) ) ) = ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) ) |
| 28 | 27 | breq1d | |- ( c = ( a ++ <" b "> ) -> ( ( c ++ ( M o. ( reverse ` c ) ) ) .~ (/) <-> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) .~ (/) ) ) |
| 29 | 28 | imbi2d | |- ( c = ( a ++ <" b "> ) -> ( ( A e. W -> ( c ++ ( M o. ( reverse ` c ) ) ) .~ (/) ) <-> ( A e. W -> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) .~ (/) ) ) ) |
| 30 | id | |- ( c = A -> c = A ) |
|
| 31 | fveq2 | |- ( c = A -> ( reverse ` c ) = ( reverse ` A ) ) |
|
| 32 | 31 | coeq2d | |- ( c = A -> ( M o. ( reverse ` c ) ) = ( M o. ( reverse ` A ) ) ) |
| 33 | 30 32 | oveq12d | |- ( c = A -> ( c ++ ( M o. ( reverse ` c ) ) ) = ( A ++ ( M o. ( reverse ` A ) ) ) ) |
| 34 | 33 | breq1d | |- ( c = A -> ( ( c ++ ( M o. ( reverse ` c ) ) ) .~ (/) <-> ( A ++ ( M o. ( reverse ` A ) ) ) .~ (/) ) ) |
| 35 | 34 | imbi2d | |- ( c = A -> ( ( A e. W -> ( c ++ ( M o. ( reverse ` c ) ) ) .~ (/) ) <-> ( A e. W -> ( A ++ ( M o. ( reverse ` A ) ) ) .~ (/) ) ) ) |
| 36 | ccatidid | |- ( (/) ++ (/) ) = (/) |
|
| 37 | 1 2 | efger | |- .~ Er W |
| 38 | 37 | a1i | |- ( A e. W -> .~ Er W ) |
| 39 | wrd0 | |- (/) e. Word ( I X. 2o ) |
|
| 40 | 1 | efgrcl | |- ( A e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
| 41 | 40 | simprd | |- ( A e. W -> W = Word ( I X. 2o ) ) |
| 42 | 39 41 | eleqtrrid | |- ( A e. W -> (/) e. W ) |
| 43 | 38 42 | erref | |- ( A e. W -> (/) .~ (/) ) |
| 44 | 36 43 | eqbrtrid | |- ( A e. W -> ( (/) ++ (/) ) .~ (/) ) |
| 45 | 37 | a1i | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> .~ Er W ) |
| 46 | simprl | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> a e. Word ( I X. 2o ) ) |
|
| 47 | revcl | |- ( a e. Word ( I X. 2o ) -> ( reverse ` a ) e. Word ( I X. 2o ) ) |
|
| 48 | 47 | ad2antrl | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( reverse ` a ) e. Word ( I X. 2o ) ) |
| 49 | 3 | efgmf | |- M : ( I X. 2o ) --> ( I X. 2o ) |
| 50 | wrdco | |- ( ( ( reverse ` a ) e. Word ( I X. 2o ) /\ M : ( I X. 2o ) --> ( I X. 2o ) ) -> ( M o. ( reverse ` a ) ) e. Word ( I X. 2o ) ) |
|
| 51 | 48 49 50 | sylancl | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( M o. ( reverse ` a ) ) e. Word ( I X. 2o ) ) |
| 52 | ccatcl | |- ( ( a e. Word ( I X. 2o ) /\ ( M o. ( reverse ` a ) ) e. Word ( I X. 2o ) ) -> ( a ++ ( M o. ( reverse ` a ) ) ) e. Word ( I X. 2o ) ) |
|
| 53 | 46 51 52 | syl2anc | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( a ++ ( M o. ( reverse ` a ) ) ) e. Word ( I X. 2o ) ) |
| 54 | 41 | adantr | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> W = Word ( I X. 2o ) ) |
| 55 | 53 54 | eleqtrrd | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( a ++ ( M o. ( reverse ` a ) ) ) e. W ) |
| 56 | lencl | |- ( a e. Word ( I X. 2o ) -> ( # ` a ) e. NN0 ) |
|
| 57 | 56 | ad2antrl | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` a ) e. NN0 ) |
| 58 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 59 | 57 58 | eleqtrdi | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` a ) e. ( ZZ>= ` 0 ) ) |
| 60 | ccatlen | |- ( ( a e. Word ( I X. 2o ) /\ ( M o. ( reverse ` a ) ) e. Word ( I X. 2o ) ) -> ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) = ( ( # ` a ) + ( # ` ( M o. ( reverse ` a ) ) ) ) ) |
|
| 61 | 46 51 60 | syl2anc | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) = ( ( # ` a ) + ( # ` ( M o. ( reverse ` a ) ) ) ) ) |
| 62 | 57 | nn0zd | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` a ) e. ZZ ) |
| 63 | 62 | uzidd | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` a ) e. ( ZZ>= ` ( # ` a ) ) ) |
| 64 | lencl | |- ( ( M o. ( reverse ` a ) ) e. Word ( I X. 2o ) -> ( # ` ( M o. ( reverse ` a ) ) ) e. NN0 ) |
|
| 65 | 51 64 | syl | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` ( M o. ( reverse ` a ) ) ) e. NN0 ) |
| 66 | uzaddcl | |- ( ( ( # ` a ) e. ( ZZ>= ` ( # ` a ) ) /\ ( # ` ( M o. ( reverse ` a ) ) ) e. NN0 ) -> ( ( # ` a ) + ( # ` ( M o. ( reverse ` a ) ) ) ) e. ( ZZ>= ` ( # ` a ) ) ) |
|
| 67 | 63 65 66 | syl2anc | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( # ` a ) + ( # ` ( M o. ( reverse ` a ) ) ) ) e. ( ZZ>= ` ( # ` a ) ) ) |
| 68 | 61 67 | eqeltrd | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) e. ( ZZ>= ` ( # ` a ) ) ) |
| 69 | elfzuzb | |- ( ( # ` a ) e. ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) <-> ( ( # ` a ) e. ( ZZ>= ` 0 ) /\ ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) e. ( ZZ>= ` ( # ` a ) ) ) ) |
|
| 70 | 59 68 69 | sylanbrc | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` a ) e. ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) ) |
| 71 | simprr | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> b e. ( I X. 2o ) ) |
|
| 72 | 1 2 3 4 | efgtval | |- ( ( ( a ++ ( M o. ( reverse ` a ) ) ) e. W /\ ( # ` a ) e. ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) /\ b e. ( I X. 2o ) ) -> ( ( # ` a ) ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) b ) = ( ( a ++ ( M o. ( reverse ` a ) ) ) splice <. ( # ` a ) , ( # ` a ) , <" b ( M ` b ) "> >. ) ) |
| 73 | 55 70 71 72 | syl3anc | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( # ` a ) ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) b ) = ( ( a ++ ( M o. ( reverse ` a ) ) ) splice <. ( # ` a ) , ( # ` a ) , <" b ( M ` b ) "> >. ) ) |
| 74 | 39 | a1i | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> (/) e. Word ( I X. 2o ) ) |
| 75 | 49 | ffvelcdmi | |- ( b e. ( I X. 2o ) -> ( M ` b ) e. ( I X. 2o ) ) |
| 76 | 75 | ad2antll | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( M ` b ) e. ( I X. 2o ) ) |
| 77 | 71 76 | s2cld | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> <" b ( M ` b ) "> e. Word ( I X. 2o ) ) |
| 78 | ccatrid | |- ( a e. Word ( I X. 2o ) -> ( a ++ (/) ) = a ) |
|
| 79 | 78 | ad2antrl | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( a ++ (/) ) = a ) |
| 80 | 79 | eqcomd | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> a = ( a ++ (/) ) ) |
| 81 | 80 | oveq1d | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( a ++ ( M o. ( reverse ` a ) ) ) = ( ( a ++ (/) ) ++ ( M o. ( reverse ` a ) ) ) ) |
| 82 | eqidd | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` a ) = ( # ` a ) ) |
|
| 83 | hash0 | |- ( # ` (/) ) = 0 |
|
| 84 | 83 | oveq2i | |- ( ( # ` a ) + ( # ` (/) ) ) = ( ( # ` a ) + 0 ) |
| 85 | 57 | nn0cnd | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` a ) e. CC ) |
| 86 | 85 | addridd | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( # ` a ) + 0 ) = ( # ` a ) ) |
| 87 | 84 86 | eqtr2id | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` a ) = ( ( # ` a ) + ( # ` (/) ) ) ) |
| 88 | 46 74 51 77 81 82 87 | splval2 | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( a ++ ( M o. ( reverse ` a ) ) ) splice <. ( # ` a ) , ( # ` a ) , <" b ( M ` b ) "> >. ) = ( ( a ++ <" b ( M ` b ) "> ) ++ ( M o. ( reverse ` a ) ) ) ) |
| 89 | 71 | s1cld | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> <" b "> e. Word ( I X. 2o ) ) |
| 90 | revccat | |- ( ( a e. Word ( I X. 2o ) /\ <" b "> e. Word ( I X. 2o ) ) -> ( reverse ` ( a ++ <" b "> ) ) = ( ( reverse ` <" b "> ) ++ ( reverse ` a ) ) ) |
|
| 91 | 46 89 90 | syl2anc | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( reverse ` ( a ++ <" b "> ) ) = ( ( reverse ` <" b "> ) ++ ( reverse ` a ) ) ) |
| 92 | revs1 | |- ( reverse ` <" b "> ) = <" b "> |
|
| 93 | 92 | oveq1i | |- ( ( reverse ` <" b "> ) ++ ( reverse ` a ) ) = ( <" b "> ++ ( reverse ` a ) ) |
| 94 | 91 93 | eqtrdi | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( reverse ` ( a ++ <" b "> ) ) = ( <" b "> ++ ( reverse ` a ) ) ) |
| 95 | 94 | coeq2d | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( M o. ( reverse ` ( a ++ <" b "> ) ) ) = ( M o. ( <" b "> ++ ( reverse ` a ) ) ) ) |
| 96 | 49 | a1i | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> M : ( I X. 2o ) --> ( I X. 2o ) ) |
| 97 | ccatco | |- ( ( <" b "> e. Word ( I X. 2o ) /\ ( reverse ` a ) e. Word ( I X. 2o ) /\ M : ( I X. 2o ) --> ( I X. 2o ) ) -> ( M o. ( <" b "> ++ ( reverse ` a ) ) ) = ( ( M o. <" b "> ) ++ ( M o. ( reverse ` a ) ) ) ) |
|
| 98 | 89 48 96 97 | syl3anc | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( M o. ( <" b "> ++ ( reverse ` a ) ) ) = ( ( M o. <" b "> ) ++ ( M o. ( reverse ` a ) ) ) ) |
| 99 | s1co | |- ( ( b e. ( I X. 2o ) /\ M : ( I X. 2o ) --> ( I X. 2o ) ) -> ( M o. <" b "> ) = <" ( M ` b ) "> ) |
|
| 100 | 71 49 99 | sylancl | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( M o. <" b "> ) = <" ( M ` b ) "> ) |
| 101 | 100 | oveq1d | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( M o. <" b "> ) ++ ( M o. ( reverse ` a ) ) ) = ( <" ( M ` b ) "> ++ ( M o. ( reverse ` a ) ) ) ) |
| 102 | 95 98 101 | 3eqtrd | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( M o. ( reverse ` ( a ++ <" b "> ) ) ) = ( <" ( M ` b ) "> ++ ( M o. ( reverse ` a ) ) ) ) |
| 103 | 102 | oveq2d | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) = ( ( a ++ <" b "> ) ++ ( <" ( M ` b ) "> ++ ( M o. ( reverse ` a ) ) ) ) ) |
| 104 | ccatcl | |- ( ( a e. Word ( I X. 2o ) /\ <" b "> e. Word ( I X. 2o ) ) -> ( a ++ <" b "> ) e. Word ( I X. 2o ) ) |
|
| 105 | 46 89 104 | syl2anc | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( a ++ <" b "> ) e. Word ( I X. 2o ) ) |
| 106 | 76 | s1cld | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> <" ( M ` b ) "> e. Word ( I X. 2o ) ) |
| 107 | ccatass | |- ( ( ( a ++ <" b "> ) e. Word ( I X. 2o ) /\ <" ( M ` b ) "> e. Word ( I X. 2o ) /\ ( M o. ( reverse ` a ) ) e. Word ( I X. 2o ) ) -> ( ( ( a ++ <" b "> ) ++ <" ( M ` b ) "> ) ++ ( M o. ( reverse ` a ) ) ) = ( ( a ++ <" b "> ) ++ ( <" ( M ` b ) "> ++ ( M o. ( reverse ` a ) ) ) ) ) |
|
| 108 | 105 106 51 107 | syl3anc | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( ( a ++ <" b "> ) ++ <" ( M ` b ) "> ) ++ ( M o. ( reverse ` a ) ) ) = ( ( a ++ <" b "> ) ++ ( <" ( M ` b ) "> ++ ( M o. ( reverse ` a ) ) ) ) ) |
| 109 | ccatass | |- ( ( a e. Word ( I X. 2o ) /\ <" b "> e. Word ( I X. 2o ) /\ <" ( M ` b ) "> e. Word ( I X. 2o ) ) -> ( ( a ++ <" b "> ) ++ <" ( M ` b ) "> ) = ( a ++ ( <" b "> ++ <" ( M ` b ) "> ) ) ) |
|
| 110 | 46 89 106 109 | syl3anc | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( a ++ <" b "> ) ++ <" ( M ` b ) "> ) = ( a ++ ( <" b "> ++ <" ( M ` b ) "> ) ) ) |
| 111 | df-s2 | |- <" b ( M ` b ) "> = ( <" b "> ++ <" ( M ` b ) "> ) |
|
| 112 | 111 | oveq2i | |- ( a ++ <" b ( M ` b ) "> ) = ( a ++ ( <" b "> ++ <" ( M ` b ) "> ) ) |
| 113 | 110 112 | eqtr4di | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( a ++ <" b "> ) ++ <" ( M ` b ) "> ) = ( a ++ <" b ( M ` b ) "> ) ) |
| 114 | 113 | oveq1d | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( ( a ++ <" b "> ) ++ <" ( M ` b ) "> ) ++ ( M o. ( reverse ` a ) ) ) = ( ( a ++ <" b ( M ` b ) "> ) ++ ( M o. ( reverse ` a ) ) ) ) |
| 115 | 103 108 114 | 3eqtr2rd | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( a ++ <" b ( M ` b ) "> ) ++ ( M o. ( reverse ` a ) ) ) = ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) ) |
| 116 | 73 88 115 | 3eqtrd | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( # ` a ) ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) b ) = ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) ) |
| 117 | 1 2 3 4 | efgtf | |- ( ( a ++ ( M o. ( reverse ` a ) ) ) e. W -> ( ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) = ( m e. ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) , u e. ( I X. 2o ) |-> ( ( a ++ ( M o. ( reverse ` a ) ) ) splice <. m , m , <" u ( M ` u ) "> >. ) ) /\ ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) : ( ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) X. ( I X. 2o ) ) --> W ) ) |
| 118 | 117 | simprd | |- ( ( a ++ ( M o. ( reverse ` a ) ) ) e. W -> ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) : ( ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) X. ( I X. 2o ) ) --> W ) |
| 119 | 55 118 | syl | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) : ( ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) X. ( I X. 2o ) ) --> W ) |
| 120 | 119 | ffnd | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) Fn ( ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) X. ( I X. 2o ) ) ) |
| 121 | fnovrn | |- ( ( ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) Fn ( ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) X. ( I X. 2o ) ) /\ ( # ` a ) e. ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) /\ b e. ( I X. 2o ) ) -> ( ( # ` a ) ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) b ) e. ran ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) |
|
| 122 | 120 70 71 121 | syl3anc | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( # ` a ) ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) b ) e. ran ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) |
| 123 | 116 122 | eqeltrrd | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) e. ran ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) |
| 124 | 1 2 3 4 | efgi2 | |- ( ( ( a ++ ( M o. ( reverse ` a ) ) ) e. W /\ ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) e. ran ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) -> ( a ++ ( M o. ( reverse ` a ) ) ) .~ ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) ) |
| 125 | 55 123 124 | syl2anc | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( a ++ ( M o. ( reverse ` a ) ) ) .~ ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) ) |
| 126 | 45 125 | ersym | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) .~ ( a ++ ( M o. ( reverse ` a ) ) ) ) |
| 127 | 45 | ertr | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) .~ ( a ++ ( M o. ( reverse ` a ) ) ) /\ ( a ++ ( M o. ( reverse ` a ) ) ) .~ (/) ) -> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) .~ (/) ) ) |
| 128 | 126 127 | mpand | |- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( a ++ ( M o. ( reverse ` a ) ) ) .~ (/) -> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) .~ (/) ) ) |
| 129 | 128 | expcom | |- ( ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) -> ( A e. W -> ( ( a ++ ( M o. ( reverse ` a ) ) ) .~ (/) -> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) .~ (/) ) ) ) |
| 130 | 129 | a2d | |- ( ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) -> ( ( A e. W -> ( a ++ ( M o. ( reverse ` a ) ) ) .~ (/) ) -> ( A e. W -> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) .~ (/) ) ) ) |
| 131 | 17 23 29 35 44 130 | wrdind | |- ( A e. Word ( I X. 2o ) -> ( A e. W -> ( A ++ ( M o. ( reverse ` A ) ) ) .~ (/) ) ) |
| 132 | 7 131 | mpcom | |- ( A e. W -> ( A ++ ( M o. ( reverse ` A ) ) ) .~ (/) ) |