This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping of a singleton word. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 26-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | s1co | |- ( ( S e. A /\ F : A --> B ) -> ( F o. <" S "> ) = <" ( F ` S ) "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val | |- ( S e. A -> <" S "> = { <. 0 , S >. } ) |
|
| 2 | 0cn | |- 0 e. CC |
|
| 3 | xpsng | |- ( ( 0 e. CC /\ S e. A ) -> ( { 0 } X. { S } ) = { <. 0 , S >. } ) |
|
| 4 | 2 3 | mpan | |- ( S e. A -> ( { 0 } X. { S } ) = { <. 0 , S >. } ) |
| 5 | 1 4 | eqtr4d | |- ( S e. A -> <" S "> = ( { 0 } X. { S } ) ) |
| 6 | 5 | adantr | |- ( ( S e. A /\ F : A --> B ) -> <" S "> = ( { 0 } X. { S } ) ) |
| 7 | 6 | coeq2d | |- ( ( S e. A /\ F : A --> B ) -> ( F o. <" S "> ) = ( F o. ( { 0 } X. { S } ) ) ) |
| 8 | fvex | |- ( F ` S ) e. _V |
|
| 9 | s1val | |- ( ( F ` S ) e. _V -> <" ( F ` S ) "> = { <. 0 , ( F ` S ) >. } ) |
|
| 10 | 8 9 | ax-mp | |- <" ( F ` S ) "> = { <. 0 , ( F ` S ) >. } |
| 11 | c0ex | |- 0 e. _V |
|
| 12 | 11 8 | xpsn | |- ( { 0 } X. { ( F ` S ) } ) = { <. 0 , ( F ` S ) >. } |
| 13 | 10 12 | eqtr4i | |- <" ( F ` S ) "> = ( { 0 } X. { ( F ` S ) } ) |
| 14 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 15 | id | |- ( S e. A -> S e. A ) |
|
| 16 | fcoconst | |- ( ( F Fn A /\ S e. A ) -> ( F o. ( { 0 } X. { S } ) ) = ( { 0 } X. { ( F ` S ) } ) ) |
|
| 17 | 14 15 16 | syl2anr | |- ( ( S e. A /\ F : A --> B ) -> ( F o. ( { 0 } X. { S } ) ) = ( { 0 } X. { ( F ` S ) } ) ) |
| 18 | 13 17 | eqtr4id | |- ( ( S e. A /\ F : A --> B ) -> <" ( F ` S ) "> = ( F o. ( { 0 } X. { S } ) ) ) |
| 19 | 7 18 | eqtr4d | |- ( ( S e. A /\ F : A --> B ) -> ( F o. <" S "> ) = <" ( F ` S ) "> ) |