This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perform induction over the structure of a word. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 26-Feb-2016) (Proof shortened by AV, 12-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wrdind.1 | |- ( x = (/) -> ( ph <-> ps ) ) |
|
| wrdind.2 | |- ( x = y -> ( ph <-> ch ) ) |
||
| wrdind.3 | |- ( x = ( y ++ <" z "> ) -> ( ph <-> th ) ) |
||
| wrdind.4 | |- ( x = A -> ( ph <-> ta ) ) |
||
| wrdind.5 | |- ps |
||
| wrdind.6 | |- ( ( y e. Word B /\ z e. B ) -> ( ch -> th ) ) |
||
| Assertion | wrdind | |- ( A e. Word B -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdind.1 | |- ( x = (/) -> ( ph <-> ps ) ) |
|
| 2 | wrdind.2 | |- ( x = y -> ( ph <-> ch ) ) |
|
| 3 | wrdind.3 | |- ( x = ( y ++ <" z "> ) -> ( ph <-> th ) ) |
|
| 4 | wrdind.4 | |- ( x = A -> ( ph <-> ta ) ) |
|
| 5 | wrdind.5 | |- ps |
|
| 6 | wrdind.6 | |- ( ( y e. Word B /\ z e. B ) -> ( ch -> th ) ) |
|
| 7 | lencl | |- ( A e. Word B -> ( # ` A ) e. NN0 ) |
|
| 8 | eqeq2 | |- ( n = 0 -> ( ( # ` x ) = n <-> ( # ` x ) = 0 ) ) |
|
| 9 | 8 | imbi1d | |- ( n = 0 -> ( ( ( # ` x ) = n -> ph ) <-> ( ( # ` x ) = 0 -> ph ) ) ) |
| 10 | 9 | ralbidv | |- ( n = 0 -> ( A. x e. Word B ( ( # ` x ) = n -> ph ) <-> A. x e. Word B ( ( # ` x ) = 0 -> ph ) ) ) |
| 11 | eqeq2 | |- ( n = m -> ( ( # ` x ) = n <-> ( # ` x ) = m ) ) |
|
| 12 | 11 | imbi1d | |- ( n = m -> ( ( ( # ` x ) = n -> ph ) <-> ( ( # ` x ) = m -> ph ) ) ) |
| 13 | 12 | ralbidv | |- ( n = m -> ( A. x e. Word B ( ( # ` x ) = n -> ph ) <-> A. x e. Word B ( ( # ` x ) = m -> ph ) ) ) |
| 14 | eqeq2 | |- ( n = ( m + 1 ) -> ( ( # ` x ) = n <-> ( # ` x ) = ( m + 1 ) ) ) |
|
| 15 | 14 | imbi1d | |- ( n = ( m + 1 ) -> ( ( ( # ` x ) = n -> ph ) <-> ( ( # ` x ) = ( m + 1 ) -> ph ) ) ) |
| 16 | 15 | ralbidv | |- ( n = ( m + 1 ) -> ( A. x e. Word B ( ( # ` x ) = n -> ph ) <-> A. x e. Word B ( ( # ` x ) = ( m + 1 ) -> ph ) ) ) |
| 17 | eqeq2 | |- ( n = ( # ` A ) -> ( ( # ` x ) = n <-> ( # ` x ) = ( # ` A ) ) ) |
|
| 18 | 17 | imbi1d | |- ( n = ( # ` A ) -> ( ( ( # ` x ) = n -> ph ) <-> ( ( # ` x ) = ( # ` A ) -> ph ) ) ) |
| 19 | 18 | ralbidv | |- ( n = ( # ` A ) -> ( A. x e. Word B ( ( # ` x ) = n -> ph ) <-> A. x e. Word B ( ( # ` x ) = ( # ` A ) -> ph ) ) ) |
| 20 | hasheq0 | |- ( x e. Word B -> ( ( # ` x ) = 0 <-> x = (/) ) ) |
|
| 21 | 5 1 | mpbiri | |- ( x = (/) -> ph ) |
| 22 | 20 21 | biimtrdi | |- ( x e. Word B -> ( ( # ` x ) = 0 -> ph ) ) |
| 23 | 22 | rgen | |- A. x e. Word B ( ( # ` x ) = 0 -> ph ) |
| 24 | fveqeq2 | |- ( x = y -> ( ( # ` x ) = m <-> ( # ` y ) = m ) ) |
|
| 25 | 24 2 | imbi12d | |- ( x = y -> ( ( ( # ` x ) = m -> ph ) <-> ( ( # ` y ) = m -> ch ) ) ) |
| 26 | 25 | cbvralvw | |- ( A. x e. Word B ( ( # ` x ) = m -> ph ) <-> A. y e. Word B ( ( # ` y ) = m -> ch ) ) |
| 27 | simprl | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> x e. Word B ) |
|
| 28 | fzossfz | |- ( 0 ..^ ( # ` x ) ) C_ ( 0 ... ( # ` x ) ) |
|
| 29 | simprr | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> ( # ` x ) = ( m + 1 ) ) |
|
| 30 | nn0p1nn | |- ( m e. NN0 -> ( m + 1 ) e. NN ) |
|
| 31 | 30 | ad2antrr | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> ( m + 1 ) e. NN ) |
| 32 | 29 31 | eqeltrd | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> ( # ` x ) e. NN ) |
| 33 | fzo0end | |- ( ( # ` x ) e. NN -> ( ( # ` x ) - 1 ) e. ( 0 ..^ ( # ` x ) ) ) |
|
| 34 | 32 33 | syl | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> ( ( # ` x ) - 1 ) e. ( 0 ..^ ( # ` x ) ) ) |
| 35 | 28 34 | sselid | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> ( ( # ` x ) - 1 ) e. ( 0 ... ( # ` x ) ) ) |
| 36 | pfxlen | |- ( ( x e. Word B /\ ( ( # ` x ) - 1 ) e. ( 0 ... ( # ` x ) ) ) -> ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( ( # ` x ) - 1 ) ) |
|
| 37 | 27 35 36 | syl2anc | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = ( ( # ` x ) - 1 ) ) |
| 38 | 29 | oveq1d | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> ( ( # ` x ) - 1 ) = ( ( m + 1 ) - 1 ) ) |
| 39 | nn0cn | |- ( m e. NN0 -> m e. CC ) |
|
| 40 | 39 | ad2antrr | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> m e. CC ) |
| 41 | ax-1cn | |- 1 e. CC |
|
| 42 | pncan | |- ( ( m e. CC /\ 1 e. CC ) -> ( ( m + 1 ) - 1 ) = m ) |
|
| 43 | 40 41 42 | sylancl | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> ( ( m + 1 ) - 1 ) = m ) |
| 44 | 37 38 43 | 3eqtrd | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = m ) |
| 45 | fveqeq2 | |- ( y = ( x prefix ( ( # ` x ) - 1 ) ) -> ( ( # ` y ) = m <-> ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = m ) ) |
|
| 46 | vex | |- y e. _V |
|
| 47 | 46 2 | sbcie | |- ( [. y / x ]. ph <-> ch ) |
| 48 | dfsbcq | |- ( y = ( x prefix ( ( # ` x ) - 1 ) ) -> ( [. y / x ]. ph <-> [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. ph ) ) |
|
| 49 | 47 48 | bitr3id | |- ( y = ( x prefix ( ( # ` x ) - 1 ) ) -> ( ch <-> [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. ph ) ) |
| 50 | 45 49 | imbi12d | |- ( y = ( x prefix ( ( # ` x ) - 1 ) ) -> ( ( ( # ` y ) = m -> ch ) <-> ( ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = m -> [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. ph ) ) ) |
| 51 | simplr | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> A. y e. Word B ( ( # ` y ) = m -> ch ) ) |
|
| 52 | pfxcl | |- ( x e. Word B -> ( x prefix ( ( # ` x ) - 1 ) ) e. Word B ) |
|
| 53 | 52 | ad2antrl | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> ( x prefix ( ( # ` x ) - 1 ) ) e. Word B ) |
| 54 | 50 51 53 | rspcdva | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> ( ( # ` ( x prefix ( ( # ` x ) - 1 ) ) ) = m -> [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. ph ) ) |
| 55 | 44 54 | mpd | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. ph ) |
| 56 | 32 | nnge1d | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> 1 <_ ( # ` x ) ) |
| 57 | wrdlenge1n0 | |- ( x e. Word B -> ( x =/= (/) <-> 1 <_ ( # ` x ) ) ) |
|
| 58 | 57 | ad2antrl | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> ( x =/= (/) <-> 1 <_ ( # ` x ) ) ) |
| 59 | 56 58 | mpbird | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> x =/= (/) ) |
| 60 | lswcl | |- ( ( x e. Word B /\ x =/= (/) ) -> ( lastS ` x ) e. B ) |
|
| 61 | 27 59 60 | syl2anc | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> ( lastS ` x ) e. B ) |
| 62 | oveq1 | |- ( y = ( x prefix ( ( # ` x ) - 1 ) ) -> ( y ++ <" z "> ) = ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" z "> ) ) |
|
| 63 | 62 | sbceq1d | |- ( y = ( x prefix ( ( # ` x ) - 1 ) ) -> ( [. ( y ++ <" z "> ) / x ]. ph <-> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" z "> ) / x ]. ph ) ) |
| 64 | 48 63 | imbi12d | |- ( y = ( x prefix ( ( # ` x ) - 1 ) ) -> ( ( [. y / x ]. ph -> [. ( y ++ <" z "> ) / x ]. ph ) <-> ( [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. ph -> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" z "> ) / x ]. ph ) ) ) |
| 65 | s1eq | |- ( z = ( lastS ` x ) -> <" z "> = <" ( lastS ` x ) "> ) |
|
| 66 | 65 | oveq2d | |- ( z = ( lastS ` x ) -> ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" z "> ) = ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) ) |
| 67 | 66 | sbceq1d | |- ( z = ( lastS ` x ) -> ( [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" z "> ) / x ]. ph <-> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) / x ]. ph ) ) |
| 68 | 67 | imbi2d | |- ( z = ( lastS ` x ) -> ( ( [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. ph -> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" z "> ) / x ]. ph ) <-> ( [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. ph -> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) / x ]. ph ) ) ) |
| 69 | ovex | |- ( y ++ <" z "> ) e. _V |
|
| 70 | 69 3 | sbcie | |- ( [. ( y ++ <" z "> ) / x ]. ph <-> th ) |
| 71 | 6 47 70 | 3imtr4g | |- ( ( y e. Word B /\ z e. B ) -> ( [. y / x ]. ph -> [. ( y ++ <" z "> ) / x ]. ph ) ) |
| 72 | 64 68 71 | vtocl2ga | |- ( ( ( x prefix ( ( # ` x ) - 1 ) ) e. Word B /\ ( lastS ` x ) e. B ) -> ( [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. ph -> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) / x ]. ph ) ) |
| 73 | 53 61 72 | syl2anc | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> ( [. ( x prefix ( ( # ` x ) - 1 ) ) / x ]. ph -> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) / x ]. ph ) ) |
| 74 | 55 73 | mpd | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) / x ]. ph ) |
| 75 | wrdfin | |- ( x e. Word B -> x e. Fin ) |
|
| 76 | 75 | ad2antrl | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> x e. Fin ) |
| 77 | hashnncl | |- ( x e. Fin -> ( ( # ` x ) e. NN <-> x =/= (/) ) ) |
|
| 78 | 76 77 | syl | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> ( ( # ` x ) e. NN <-> x =/= (/) ) ) |
| 79 | 32 78 | mpbid | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> x =/= (/) ) |
| 80 | pfxlswccat | |- ( ( x e. Word B /\ x =/= (/) ) -> ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) = x ) |
|
| 81 | 80 | eqcomd | |- ( ( x e. Word B /\ x =/= (/) ) -> x = ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) ) |
| 82 | 27 79 81 | syl2anc | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> x = ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) ) |
| 83 | sbceq1a | |- ( x = ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) -> ( ph <-> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) / x ]. ph ) ) |
|
| 84 | 82 83 | syl | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> ( ph <-> [. ( ( x prefix ( ( # ` x ) - 1 ) ) ++ <" ( lastS ` x ) "> ) / x ]. ph ) ) |
| 85 | 74 84 | mpbird | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ ( x e. Word B /\ ( # ` x ) = ( m + 1 ) ) ) -> ph ) |
| 86 | 85 | expr | |- ( ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) /\ x e. Word B ) -> ( ( # ` x ) = ( m + 1 ) -> ph ) ) |
| 87 | 86 | ralrimiva | |- ( ( m e. NN0 /\ A. y e. Word B ( ( # ` y ) = m -> ch ) ) -> A. x e. Word B ( ( # ` x ) = ( m + 1 ) -> ph ) ) |
| 88 | 87 | ex | |- ( m e. NN0 -> ( A. y e. Word B ( ( # ` y ) = m -> ch ) -> A. x e. Word B ( ( # ` x ) = ( m + 1 ) -> ph ) ) ) |
| 89 | 26 88 | biimtrid | |- ( m e. NN0 -> ( A. x e. Word B ( ( # ` x ) = m -> ph ) -> A. x e. Word B ( ( # ` x ) = ( m + 1 ) -> ph ) ) ) |
| 90 | 10 13 16 19 23 89 | nn0ind | |- ( ( # ` A ) e. NN0 -> A. x e. Word B ( ( # ` x ) = ( # ` A ) -> ph ) ) |
| 91 | 7 90 | syl | |- ( A e. Word B -> A. x e. Word B ( ( # ` x ) = ( # ` A ) -> ph ) ) |
| 92 | eqidd | |- ( A e. Word B -> ( # ` A ) = ( # ` A ) ) |
|
| 93 | fveqeq2 | |- ( x = A -> ( ( # ` x ) = ( # ` A ) <-> ( # ` A ) = ( # ` A ) ) ) |
|
| 94 | 93 4 | imbi12d | |- ( x = A -> ( ( ( # ` x ) = ( # ` A ) -> ph ) <-> ( ( # ` A ) = ( # ` A ) -> ta ) ) ) |
| 95 | 94 | rspcv | |- ( A e. Word B -> ( A. x e. Word B ( ( # ` x ) = ( # ` A ) -> ph ) -> ( ( # ` A ) = ( # ` A ) -> ta ) ) ) |
| 96 | 91 92 95 | mp2d | |- ( A e. Word B -> ta ) |