This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| Assertion | efginvrel1 | |- ( A e. W -> ( ( M o. ( reverse ` A ) ) ++ A ) .~ (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | fviss | |- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
|
| 6 | 1 5 | eqsstri | |- W C_ Word ( I X. 2o ) |
| 7 | 6 | sseli | |- ( A e. W -> A e. Word ( I X. 2o ) ) |
| 8 | revcl | |- ( A e. Word ( I X. 2o ) -> ( reverse ` A ) e. Word ( I X. 2o ) ) |
|
| 9 | 7 8 | syl | |- ( A e. W -> ( reverse ` A ) e. Word ( I X. 2o ) ) |
| 10 | 3 | efgmf | |- M : ( I X. 2o ) --> ( I X. 2o ) |
| 11 | revco | |- ( ( ( reverse ` A ) e. Word ( I X. 2o ) /\ M : ( I X. 2o ) --> ( I X. 2o ) ) -> ( M o. ( reverse ` ( reverse ` A ) ) ) = ( reverse ` ( M o. ( reverse ` A ) ) ) ) |
|
| 12 | 9 10 11 | sylancl | |- ( A e. W -> ( M o. ( reverse ` ( reverse ` A ) ) ) = ( reverse ` ( M o. ( reverse ` A ) ) ) ) |
| 13 | revrev | |- ( A e. Word ( I X. 2o ) -> ( reverse ` ( reverse ` A ) ) = A ) |
|
| 14 | 7 13 | syl | |- ( A e. W -> ( reverse ` ( reverse ` A ) ) = A ) |
| 15 | 14 | coeq2d | |- ( A e. W -> ( M o. ( reverse ` ( reverse ` A ) ) ) = ( M o. A ) ) |
| 16 | 12 15 | eqtr3d | |- ( A e. W -> ( reverse ` ( M o. ( reverse ` A ) ) ) = ( M o. A ) ) |
| 17 | 16 | coeq2d | |- ( A e. W -> ( M o. ( reverse ` ( M o. ( reverse ` A ) ) ) ) = ( M o. ( M o. A ) ) ) |
| 18 | wrdf | |- ( A e. Word ( I X. 2o ) -> A : ( 0 ..^ ( # ` A ) ) --> ( I X. 2o ) ) |
|
| 19 | 7 18 | syl | |- ( A e. W -> A : ( 0 ..^ ( # ` A ) ) --> ( I X. 2o ) ) |
| 20 | 19 | ffvelcdmda | |- ( ( A e. W /\ c e. ( 0 ..^ ( # ` A ) ) ) -> ( A ` c ) e. ( I X. 2o ) ) |
| 21 | 3 | efgmnvl | |- ( ( A ` c ) e. ( I X. 2o ) -> ( M ` ( M ` ( A ` c ) ) ) = ( A ` c ) ) |
| 22 | 20 21 | syl | |- ( ( A e. W /\ c e. ( 0 ..^ ( # ` A ) ) ) -> ( M ` ( M ` ( A ` c ) ) ) = ( A ` c ) ) |
| 23 | 22 | mpteq2dva | |- ( A e. W -> ( c e. ( 0 ..^ ( # ` A ) ) |-> ( M ` ( M ` ( A ` c ) ) ) ) = ( c e. ( 0 ..^ ( # ` A ) ) |-> ( A ` c ) ) ) |
| 24 | 10 | ffvelcdmi | |- ( ( A ` c ) e. ( I X. 2o ) -> ( M ` ( A ` c ) ) e. ( I X. 2o ) ) |
| 25 | 20 24 | syl | |- ( ( A e. W /\ c e. ( 0 ..^ ( # ` A ) ) ) -> ( M ` ( A ` c ) ) e. ( I X. 2o ) ) |
| 26 | fcompt | |- ( ( M : ( I X. 2o ) --> ( I X. 2o ) /\ A : ( 0 ..^ ( # ` A ) ) --> ( I X. 2o ) ) -> ( M o. A ) = ( c e. ( 0 ..^ ( # ` A ) ) |-> ( M ` ( A ` c ) ) ) ) |
|
| 27 | 10 19 26 | sylancr | |- ( A e. W -> ( M o. A ) = ( c e. ( 0 ..^ ( # ` A ) ) |-> ( M ` ( A ` c ) ) ) ) |
| 28 | 10 | a1i | |- ( A e. W -> M : ( I X. 2o ) --> ( I X. 2o ) ) |
| 29 | 28 | feqmptd | |- ( A e. W -> M = ( a e. ( I X. 2o ) |-> ( M ` a ) ) ) |
| 30 | fveq2 | |- ( a = ( M ` ( A ` c ) ) -> ( M ` a ) = ( M ` ( M ` ( A ` c ) ) ) ) |
|
| 31 | 25 27 29 30 | fmptco | |- ( A e. W -> ( M o. ( M o. A ) ) = ( c e. ( 0 ..^ ( # ` A ) ) |-> ( M ` ( M ` ( A ` c ) ) ) ) ) |
| 32 | 19 | feqmptd | |- ( A e. W -> A = ( c e. ( 0 ..^ ( # ` A ) ) |-> ( A ` c ) ) ) |
| 33 | 23 31 32 | 3eqtr4d | |- ( A e. W -> ( M o. ( M o. A ) ) = A ) |
| 34 | 17 33 | eqtrd | |- ( A e. W -> ( M o. ( reverse ` ( M o. ( reverse ` A ) ) ) ) = A ) |
| 35 | 34 | oveq2d | |- ( A e. W -> ( ( M o. ( reverse ` A ) ) ++ ( M o. ( reverse ` ( M o. ( reverse ` A ) ) ) ) ) = ( ( M o. ( reverse ` A ) ) ++ A ) ) |
| 36 | wrdco | |- ( ( ( reverse ` A ) e. Word ( I X. 2o ) /\ M : ( I X. 2o ) --> ( I X. 2o ) ) -> ( M o. ( reverse ` A ) ) e. Word ( I X. 2o ) ) |
|
| 37 | 9 10 36 | sylancl | |- ( A e. W -> ( M o. ( reverse ` A ) ) e. Word ( I X. 2o ) ) |
| 38 | 1 | efgrcl | |- ( A e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
| 39 | 38 | simprd | |- ( A e. W -> W = Word ( I X. 2o ) ) |
| 40 | 37 39 | eleqtrrd | |- ( A e. W -> ( M o. ( reverse ` A ) ) e. W ) |
| 41 | 1 2 3 4 | efginvrel2 | |- ( ( M o. ( reverse ` A ) ) e. W -> ( ( M o. ( reverse ` A ) ) ++ ( M o. ( reverse ` ( M o. ( reverse ` A ) ) ) ) ) .~ (/) ) |
| 42 | 40 41 | syl | |- ( A e. W -> ( ( M o. ( reverse ` A ) ) ++ ( M o. ( reverse ` ( M o. ( reverse ` A ) ) ) ) ) .~ (/) ) |
| 43 | 35 42 | eqbrtrrd | |- ( A e. W -> ( ( M o. ( reverse ` A ) ) ++ A ) .~ (/) ) |