This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ersymb.1 | |- ( ph -> R Er X ) |
|
| Assertion | ertr | |- ( ph -> ( ( A R B /\ B R C ) -> A R C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersymb.1 | |- ( ph -> R Er X ) |
|
| 2 | errel | |- ( R Er X -> Rel R ) |
|
| 3 | 1 2 | syl | |- ( ph -> Rel R ) |
| 4 | simpr | |- ( ( A R B /\ B R C ) -> B R C ) |
|
| 5 | brrelex1 | |- ( ( Rel R /\ B R C ) -> B e. _V ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( ph /\ ( A R B /\ B R C ) ) -> B e. _V ) |
| 7 | simpr | |- ( ( ph /\ ( A R B /\ B R C ) ) -> ( A R B /\ B R C ) ) |
|
| 8 | breq2 | |- ( x = B -> ( A R x <-> A R B ) ) |
|
| 9 | breq1 | |- ( x = B -> ( x R C <-> B R C ) ) |
|
| 10 | 8 9 | anbi12d | |- ( x = B -> ( ( A R x /\ x R C ) <-> ( A R B /\ B R C ) ) ) |
| 11 | 6 7 10 | spcedv | |- ( ( ph /\ ( A R B /\ B R C ) ) -> E. x ( A R x /\ x R C ) ) |
| 12 | simpl | |- ( ( A R B /\ B R C ) -> A R B ) |
|
| 13 | brrelex1 | |- ( ( Rel R /\ A R B ) -> A e. _V ) |
|
| 14 | 3 12 13 | syl2an | |- ( ( ph /\ ( A R B /\ B R C ) ) -> A e. _V ) |
| 15 | brrelex2 | |- ( ( Rel R /\ B R C ) -> C e. _V ) |
|
| 16 | 3 4 15 | syl2an | |- ( ( ph /\ ( A R B /\ B R C ) ) -> C e. _V ) |
| 17 | brcog | |- ( ( A e. _V /\ C e. _V ) -> ( A ( R o. R ) C <-> E. x ( A R x /\ x R C ) ) ) |
|
| 18 | 14 16 17 | syl2anc | |- ( ( ph /\ ( A R B /\ B R C ) ) -> ( A ( R o. R ) C <-> E. x ( A R x /\ x R C ) ) ) |
| 19 | 11 18 | mpbird | |- ( ( ph /\ ( A R B /\ B R C ) ) -> A ( R o. R ) C ) |
| 20 | 19 | ex | |- ( ph -> ( ( A R B /\ B R C ) -> A ( R o. R ) C ) ) |
| 21 | df-er | |- ( R Er X <-> ( Rel R /\ dom R = X /\ ( `' R u. ( R o. R ) ) C_ R ) ) |
|
| 22 | 21 | simp3bi | |- ( R Er X -> ( `' R u. ( R o. R ) ) C_ R ) |
| 23 | 1 22 | syl | |- ( ph -> ( `' R u. ( R o. R ) ) C_ R ) |
| 24 | 23 | unssbd | |- ( ph -> ( R o. R ) C_ R ) |
| 25 | 24 | ssbrd | |- ( ph -> ( A ( R o. R ) C -> A R C ) ) |
| 26 | 20 25 | syld | |- ( ph -> ( ( A R B /\ B R C ) -> A R C ) ) |