This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Concatenation of a word by the empty word on the right. (Contributed by Stefan O'Rear, 15-Aug-2015) (Proof shortened by AV, 1-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatrid | |- ( S e. Word B -> ( S ++ (/) ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrd0 | |- (/) e. Word B |
|
| 2 | ccatvalfn | |- ( ( S e. Word B /\ (/) e. Word B ) -> ( S ++ (/) ) Fn ( 0 ..^ ( ( # ` S ) + ( # ` (/) ) ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( S e. Word B -> ( S ++ (/) ) Fn ( 0 ..^ ( ( # ` S ) + ( # ` (/) ) ) ) ) |
| 4 | hash0 | |- ( # ` (/) ) = 0 |
|
| 5 | 4 | oveq2i | |- ( ( # ` S ) + ( # ` (/) ) ) = ( ( # ` S ) + 0 ) |
| 6 | lencl | |- ( S e. Word B -> ( # ` S ) e. NN0 ) |
|
| 7 | 6 | nn0cnd | |- ( S e. Word B -> ( # ` S ) e. CC ) |
| 8 | 7 | addridd | |- ( S e. Word B -> ( ( # ` S ) + 0 ) = ( # ` S ) ) |
| 9 | 5 8 | eqtr2id | |- ( S e. Word B -> ( # ` S ) = ( ( # ` S ) + ( # ` (/) ) ) ) |
| 10 | 9 | oveq2d | |- ( S e. Word B -> ( 0 ..^ ( # ` S ) ) = ( 0 ..^ ( ( # ` S ) + ( # ` (/) ) ) ) ) |
| 11 | 10 | fneq2d | |- ( S e. Word B -> ( ( S ++ (/) ) Fn ( 0 ..^ ( # ` S ) ) <-> ( S ++ (/) ) Fn ( 0 ..^ ( ( # ` S ) + ( # ` (/) ) ) ) ) ) |
| 12 | 3 11 | mpbird | |- ( S e. Word B -> ( S ++ (/) ) Fn ( 0 ..^ ( # ` S ) ) ) |
| 13 | wrdfn | |- ( S e. Word B -> S Fn ( 0 ..^ ( # ` S ) ) ) |
|
| 14 | ccatval1 | |- ( ( S e. Word B /\ (/) e. Word B /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( S ++ (/) ) ` x ) = ( S ` x ) ) |
|
| 15 | 1 14 | mp3an2 | |- ( ( S e. Word B /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( S ++ (/) ) ` x ) = ( S ` x ) ) |
| 16 | 12 13 15 | eqfnfvd | |- ( S e. Word B -> ( S ++ (/) ) = S ) |