This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| Assertion | efgtf | |- ( X e. W -> ( ( T ` X ) = ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` X ) : ( ( 0 ... ( # ` X ) ) X. ( I X. 2o ) ) --> W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | fviss | |- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
|
| 6 | 1 5 | eqsstri | |- W C_ Word ( I X. 2o ) |
| 7 | simpl | |- ( ( X e. W /\ ( a e. ( 0 ... ( # ` X ) ) /\ b e. ( I X. 2o ) ) ) -> X e. W ) |
|
| 8 | 6 7 | sselid | |- ( ( X e. W /\ ( a e. ( 0 ... ( # ` X ) ) /\ b e. ( I X. 2o ) ) ) -> X e. Word ( I X. 2o ) ) |
| 9 | simprr | |- ( ( X e. W /\ ( a e. ( 0 ... ( # ` X ) ) /\ b e. ( I X. 2o ) ) ) -> b e. ( I X. 2o ) ) |
|
| 10 | 3 | efgmf | |- M : ( I X. 2o ) --> ( I X. 2o ) |
| 11 | 10 | ffvelcdmi | |- ( b e. ( I X. 2o ) -> ( M ` b ) e. ( I X. 2o ) ) |
| 12 | 11 | ad2antll | |- ( ( X e. W /\ ( a e. ( 0 ... ( # ` X ) ) /\ b e. ( I X. 2o ) ) ) -> ( M ` b ) e. ( I X. 2o ) ) |
| 13 | 9 12 | s2cld | |- ( ( X e. W /\ ( a e. ( 0 ... ( # ` X ) ) /\ b e. ( I X. 2o ) ) ) -> <" b ( M ` b ) "> e. Word ( I X. 2o ) ) |
| 14 | splcl | |- ( ( X e. Word ( I X. 2o ) /\ <" b ( M ` b ) "> e. Word ( I X. 2o ) ) -> ( X splice <. a , a , <" b ( M ` b ) "> >. ) e. Word ( I X. 2o ) ) |
|
| 15 | 8 13 14 | syl2anc | |- ( ( X e. W /\ ( a e. ( 0 ... ( # ` X ) ) /\ b e. ( I X. 2o ) ) ) -> ( X splice <. a , a , <" b ( M ` b ) "> >. ) e. Word ( I X. 2o ) ) |
| 16 | 1 | efgrcl | |- ( X e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
| 17 | 16 | simprd | |- ( X e. W -> W = Word ( I X. 2o ) ) |
| 18 | 17 | adantr | |- ( ( X e. W /\ ( a e. ( 0 ... ( # ` X ) ) /\ b e. ( I X. 2o ) ) ) -> W = Word ( I X. 2o ) ) |
| 19 | 15 18 | eleqtrrd | |- ( ( X e. W /\ ( a e. ( 0 ... ( # ` X ) ) /\ b e. ( I X. 2o ) ) ) -> ( X splice <. a , a , <" b ( M ` b ) "> >. ) e. W ) |
| 20 | 19 | ralrimivva | |- ( X e. W -> A. a e. ( 0 ... ( # ` X ) ) A. b e. ( I X. 2o ) ( X splice <. a , a , <" b ( M ` b ) "> >. ) e. W ) |
| 21 | eqid | |- ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) = ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) |
|
| 22 | 21 | fmpo | |- ( A. a e. ( 0 ... ( # ` X ) ) A. b e. ( I X. 2o ) ( X splice <. a , a , <" b ( M ` b ) "> >. ) e. W <-> ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) : ( ( 0 ... ( # ` X ) ) X. ( I X. 2o ) ) --> W ) |
| 23 | 20 22 | sylib | |- ( X e. W -> ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) : ( ( 0 ... ( # ` X ) ) X. ( I X. 2o ) ) --> W ) |
| 24 | ovex | |- ( 0 ... ( # ` X ) ) e. _V |
|
| 25 | 16 | simpld | |- ( X e. W -> I e. _V ) |
| 26 | 2on | |- 2o e. On |
|
| 27 | xpexg | |- ( ( I e. _V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
|
| 28 | 25 26 27 | sylancl | |- ( X e. W -> ( I X. 2o ) e. _V ) |
| 29 | xpexg | |- ( ( ( 0 ... ( # ` X ) ) e. _V /\ ( I X. 2o ) e. _V ) -> ( ( 0 ... ( # ` X ) ) X. ( I X. 2o ) ) e. _V ) |
|
| 30 | 24 28 29 | sylancr | |- ( X e. W -> ( ( 0 ... ( # ` X ) ) X. ( I X. 2o ) ) e. _V ) |
| 31 | 23 30 | fexd | |- ( X e. W -> ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) e. _V ) |
| 32 | fveq2 | |- ( u = X -> ( # ` u ) = ( # ` X ) ) |
|
| 33 | 32 | oveq2d | |- ( u = X -> ( 0 ... ( # ` u ) ) = ( 0 ... ( # ` X ) ) ) |
| 34 | eqidd | |- ( u = X -> ( I X. 2o ) = ( I X. 2o ) ) |
|
| 35 | oveq1 | |- ( u = X -> ( u splice <. a , a , <" b ( M ` b ) "> >. ) = ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) |
|
| 36 | 33 34 35 | mpoeq123dv | |- ( u = X -> ( a e. ( 0 ... ( # ` u ) ) , b e. ( I X. 2o ) |-> ( u splice <. a , a , <" b ( M ` b ) "> >. ) ) = ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) ) |
| 37 | oteq1 | |- ( n = a -> <. n , n , <" w ( M ` w ) "> >. = <. a , n , <" w ( M ` w ) "> >. ) |
|
| 38 | oteq2 | |- ( n = a -> <. a , n , <" w ( M ` w ) "> >. = <. a , a , <" w ( M ` w ) "> >. ) |
|
| 39 | 37 38 | eqtrd | |- ( n = a -> <. n , n , <" w ( M ` w ) "> >. = <. a , a , <" w ( M ` w ) "> >. ) |
| 40 | 39 | oveq2d | |- ( n = a -> ( v splice <. n , n , <" w ( M ` w ) "> >. ) = ( v splice <. a , a , <" w ( M ` w ) "> >. ) ) |
| 41 | id | |- ( w = b -> w = b ) |
|
| 42 | fveq2 | |- ( w = b -> ( M ` w ) = ( M ` b ) ) |
|
| 43 | 41 42 | s2eqd | |- ( w = b -> <" w ( M ` w ) "> = <" b ( M ` b ) "> ) |
| 44 | 43 | oteq3d | |- ( w = b -> <. a , a , <" w ( M ` w ) "> >. = <. a , a , <" b ( M ` b ) "> >. ) |
| 45 | 44 | oveq2d | |- ( w = b -> ( v splice <. a , a , <" w ( M ` w ) "> >. ) = ( v splice <. a , a , <" b ( M ` b ) "> >. ) ) |
| 46 | 40 45 | cbvmpov | |- ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) = ( a e. ( 0 ... ( # ` v ) ) , b e. ( I X. 2o ) |-> ( v splice <. a , a , <" b ( M ` b ) "> >. ) ) |
| 47 | fveq2 | |- ( v = u -> ( # ` v ) = ( # ` u ) ) |
|
| 48 | 47 | oveq2d | |- ( v = u -> ( 0 ... ( # ` v ) ) = ( 0 ... ( # ` u ) ) ) |
| 49 | eqidd | |- ( v = u -> ( I X. 2o ) = ( I X. 2o ) ) |
|
| 50 | oveq1 | |- ( v = u -> ( v splice <. a , a , <" b ( M ` b ) "> >. ) = ( u splice <. a , a , <" b ( M ` b ) "> >. ) ) |
|
| 51 | 48 49 50 | mpoeq123dv | |- ( v = u -> ( a e. ( 0 ... ( # ` v ) ) , b e. ( I X. 2o ) |-> ( v splice <. a , a , <" b ( M ` b ) "> >. ) ) = ( a e. ( 0 ... ( # ` u ) ) , b e. ( I X. 2o ) |-> ( u splice <. a , a , <" b ( M ` b ) "> >. ) ) ) |
| 52 | 46 51 | eqtrid | |- ( v = u -> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) = ( a e. ( 0 ... ( # ` u ) ) , b e. ( I X. 2o ) |-> ( u splice <. a , a , <" b ( M ` b ) "> >. ) ) ) |
| 53 | 52 | cbvmptv | |- ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) = ( u e. W |-> ( a e. ( 0 ... ( # ` u ) ) , b e. ( I X. 2o ) |-> ( u splice <. a , a , <" b ( M ` b ) "> >. ) ) ) |
| 54 | 4 53 | eqtri | |- T = ( u e. W |-> ( a e. ( 0 ... ( # ` u ) ) , b e. ( I X. 2o ) |-> ( u splice <. a , a , <" b ( M ` b ) "> >. ) ) ) |
| 55 | 36 54 | fvmptg | |- ( ( X e. W /\ ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) e. _V ) -> ( T ` X ) = ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) ) |
| 56 | 31 55 | mpdan | |- ( X e. W -> ( T ` X ) = ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) ) |
| 57 | 56 | feq1d | |- ( X e. W -> ( ( T ` X ) : ( ( 0 ... ( # ` X ) ) X. ( I X. 2o ) ) --> W <-> ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) : ( ( 0 ... ( # ` X ) ) X. ( I X. 2o ) ) --> W ) ) |
| 58 | 23 57 | mpbird | |- ( X e. W -> ( T ` X ) : ( ( 0 ... ( # ` X ) ) X. ( I X. 2o ) ) --> W ) |
| 59 | 56 58 | jca | |- ( X e. W -> ( ( T ` X ) = ( a e. ( 0 ... ( # ` X ) ) , b e. ( I X. 2o ) |-> ( X splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` X ) : ( ( 0 ... ( # ` X ) ) X. ( I X. 2o ) ) --> W ) ) |