This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reverse of a word is a word. (Contributed by Stefan O'Rear, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | revcl | |- ( W e. Word A -> ( reverse ` W ) e. Word A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | revval | |- ( W e. Word A -> ( reverse ` W ) = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ) |
|
| 2 | wrdf | |- ( W e. Word A -> W : ( 0 ..^ ( # ` W ) ) --> A ) |
|
| 3 | 2 | adantr | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> W : ( 0 ..^ ( # ` W ) ) --> A ) |
| 4 | simpr | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> x e. ( 0 ..^ ( # ` W ) ) ) |
|
| 5 | lencl | |- ( W e. Word A -> ( # ` W ) e. NN0 ) |
|
| 6 | 5 | adantr | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` W ) e. NN0 ) |
| 7 | 6 | nn0zd | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` W ) e. ZZ ) |
| 8 | fzoval | |- ( ( # ` W ) e. ZZ -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
|
| 9 | 7 8 | syl | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 10 | 4 9 | eleqtrd | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 11 | fznn0sub2 | |- ( x e. ( 0 ... ( ( # ` W ) - 1 ) ) -> ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ... ( ( # ` W ) - 1 ) ) ) |
|
| 12 | 10 11 | syl | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 13 | 12 9 | eleqtrrd | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ..^ ( # ` W ) ) ) |
| 14 | 3 13 | ffvelcdmd | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) e. A ) |
| 15 | 14 | fmpttd | |- ( W e. Word A -> ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) : ( 0 ..^ ( # ` W ) ) --> A ) |
| 16 | iswrdi | |- ( ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) : ( 0 ..^ ( # ` W ) ) --> A -> ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) e. Word A ) |
|
| 17 | 15 16 | syl | |- ( W e. Word A -> ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) e. Word A ) |
| 18 | 1 17 | eqeltrd | |- ( W e. Word A -> ( reverse ` W ) e. Word A ) |