This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of Enderton p. 56. (Contributed by Mario Carneiro, 6-May-2013) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ersymb.1 | |- ( ph -> R Er X ) |
|
| erref.2 | |- ( ph -> A e. X ) |
||
| Assertion | erref | |- ( ph -> A R A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersymb.1 | |- ( ph -> R Er X ) |
|
| 2 | erref.2 | |- ( ph -> A e. X ) |
|
| 3 | erdm | |- ( R Er X -> dom R = X ) |
|
| 4 | 1 3 | syl | |- ( ph -> dom R = X ) |
| 5 | 2 4 | eleqtrrd | |- ( ph -> A e. dom R ) |
| 6 | eldmg | |- ( A e. X -> ( A e. dom R <-> E. x A R x ) ) |
|
| 7 | 2 6 | syl | |- ( ph -> ( A e. dom R <-> E. x A R x ) ) |
| 8 | 5 7 | mpbid | |- ( ph -> E. x A R x ) |
| 9 | 1 | adantr | |- ( ( ph /\ A R x ) -> R Er X ) |
| 10 | simpr | |- ( ( ph /\ A R x ) -> A R x ) |
|
| 11 | 9 10 10 | ertr4d | |- ( ( ph /\ A R x ) -> A R A ) |
| 12 | 8 11 | exlimddv | |- ( ph -> A R A ) |