This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ersym.1 | |- ( ph -> R Er X ) |
|
| ersym.2 | |- ( ph -> A R B ) |
||
| Assertion | ersym | |- ( ph -> B R A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersym.1 | |- ( ph -> R Er X ) |
|
| 2 | ersym.2 | |- ( ph -> A R B ) |
|
| 3 | errel | |- ( R Er X -> Rel R ) |
|
| 4 | 1 3 | syl | |- ( ph -> Rel R ) |
| 5 | brrelex12 | |- ( ( Rel R /\ A R B ) -> ( A e. _V /\ B e. _V ) ) |
|
| 6 | 4 2 5 | syl2anc | |- ( ph -> ( A e. _V /\ B e. _V ) ) |
| 7 | brcnvg | |- ( ( B e. _V /\ A e. _V ) -> ( B `' R A <-> A R B ) ) |
|
| 8 | 7 | ancoms | |- ( ( A e. _V /\ B e. _V ) -> ( B `' R A <-> A R B ) ) |
| 9 | 6 8 | syl | |- ( ph -> ( B `' R A <-> A R B ) ) |
| 10 | 2 9 | mpbird | |- ( ph -> B `' R A ) |
| 11 | df-er | |- ( R Er X <-> ( Rel R /\ dom R = X /\ ( `' R u. ( R o. R ) ) C_ R ) ) |
|
| 12 | 11 | simp3bi | |- ( R Er X -> ( `' R u. ( R o. R ) ) C_ R ) |
| 13 | 1 12 | syl | |- ( ph -> ( `' R u. ( R o. R ) ) C_ R ) |
| 14 | 13 | unssad | |- ( ph -> `' R C_ R ) |
| 15 | 14 | ssbrd | |- ( ph -> ( B `' R A -> B R A ) ) |
| 16 | 10 15 | mpd | |- ( ph -> B R A ) |