This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| Assertion | efginvrel2 | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ∼ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | fviss | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) | |
| 6 | 1 5 | eqsstri | ⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
| 7 | 6 | sseli | ⊢ ( 𝐴 ∈ 𝑊 → 𝐴 ∈ Word ( 𝐼 × 2o ) ) |
| 8 | id | ⊢ ( 𝑐 = ∅ → 𝑐 = ∅ ) | |
| 9 | fveq2 | ⊢ ( 𝑐 = ∅ → ( reverse ‘ 𝑐 ) = ( reverse ‘ ∅ ) ) | |
| 10 | rev0 | ⊢ ( reverse ‘ ∅ ) = ∅ | |
| 11 | 9 10 | eqtrdi | ⊢ ( 𝑐 = ∅ → ( reverse ‘ 𝑐 ) = ∅ ) |
| 12 | 11 | coeq2d | ⊢ ( 𝑐 = ∅ → ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) = ( 𝑀 ∘ ∅ ) ) |
| 13 | co02 | ⊢ ( 𝑀 ∘ ∅ ) = ∅ | |
| 14 | 12 13 | eqtrdi | ⊢ ( 𝑐 = ∅ → ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) = ∅ ) |
| 15 | 8 14 | oveq12d | ⊢ ( 𝑐 = ∅ → ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) = ( ∅ ++ ∅ ) ) |
| 16 | 15 | breq1d | ⊢ ( 𝑐 = ∅ → ( ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) ∼ ∅ ↔ ( ∅ ++ ∅ ) ∼ ∅ ) ) |
| 17 | 16 | imbi2d | ⊢ ( 𝑐 = ∅ → ( ( 𝐴 ∈ 𝑊 → ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) ∼ ∅ ) ↔ ( 𝐴 ∈ 𝑊 → ( ∅ ++ ∅ ) ∼ ∅ ) ) ) |
| 18 | id | ⊢ ( 𝑐 = 𝑎 → 𝑐 = 𝑎 ) | |
| 19 | fveq2 | ⊢ ( 𝑐 = 𝑎 → ( reverse ‘ 𝑐 ) = ( reverse ‘ 𝑎 ) ) | |
| 20 | 19 | coeq2d | ⊢ ( 𝑐 = 𝑎 → ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) = ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) |
| 21 | 18 20 | oveq12d | ⊢ ( 𝑐 = 𝑎 → ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) = ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) |
| 22 | 21 | breq1d | ⊢ ( 𝑐 = 𝑎 → ( ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) ∼ ∅ ↔ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∼ ∅ ) ) |
| 23 | 22 | imbi2d | ⊢ ( 𝑐 = 𝑎 → ( ( 𝐴 ∈ 𝑊 → ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) ∼ ∅ ) ↔ ( 𝐴 ∈ 𝑊 → ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∼ ∅ ) ) ) |
| 24 | id | ⊢ ( 𝑐 = ( 𝑎 ++ 〈“ 𝑏 ”〉 ) → 𝑐 = ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) | |
| 25 | fveq2 | ⊢ ( 𝑐 = ( 𝑎 ++ 〈“ 𝑏 ”〉 ) → ( reverse ‘ 𝑐 ) = ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) | |
| 26 | 25 | coeq2d | ⊢ ( 𝑐 = ( 𝑎 ++ 〈“ 𝑏 ”〉 ) → ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) = ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) |
| 27 | 24 26 | oveq12d | ⊢ ( 𝑐 = ( 𝑎 ++ 〈“ 𝑏 ”〉 ) → ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) = ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ) |
| 28 | 27 | breq1d | ⊢ ( 𝑐 = ( 𝑎 ++ 〈“ 𝑏 ”〉 ) → ( ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) ∼ ∅ ↔ ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∼ ∅ ) ) |
| 29 | 28 | imbi2d | ⊢ ( 𝑐 = ( 𝑎 ++ 〈“ 𝑏 ”〉 ) → ( ( 𝐴 ∈ 𝑊 → ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) ∼ ∅ ) ↔ ( 𝐴 ∈ 𝑊 → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∼ ∅ ) ) ) |
| 30 | id | ⊢ ( 𝑐 = 𝐴 → 𝑐 = 𝐴 ) | |
| 31 | fveq2 | ⊢ ( 𝑐 = 𝐴 → ( reverse ‘ 𝑐 ) = ( reverse ‘ 𝐴 ) ) | |
| 32 | 31 | coeq2d | ⊢ ( 𝑐 = 𝐴 → ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) = ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) |
| 33 | 30 32 | oveq12d | ⊢ ( 𝑐 = 𝐴 → ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) = ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ) |
| 34 | 33 | breq1d | ⊢ ( 𝑐 = 𝐴 → ( ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) ∼ ∅ ↔ ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ∼ ∅ ) ) |
| 35 | 34 | imbi2d | ⊢ ( 𝑐 = 𝐴 → ( ( 𝐴 ∈ 𝑊 → ( 𝑐 ++ ( 𝑀 ∘ ( reverse ‘ 𝑐 ) ) ) ∼ ∅ ) ↔ ( 𝐴 ∈ 𝑊 → ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ∼ ∅ ) ) ) |
| 36 | ccatidid | ⊢ ( ∅ ++ ∅ ) = ∅ | |
| 37 | 1 2 | efger | ⊢ ∼ Er 𝑊 |
| 38 | 37 | a1i | ⊢ ( 𝐴 ∈ 𝑊 → ∼ Er 𝑊 ) |
| 39 | wrd0 | ⊢ ∅ ∈ Word ( 𝐼 × 2o ) | |
| 40 | 1 | efgrcl | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
| 41 | 40 | simprd | ⊢ ( 𝐴 ∈ 𝑊 → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 42 | 39 41 | eleqtrrid | ⊢ ( 𝐴 ∈ 𝑊 → ∅ ∈ 𝑊 ) |
| 43 | 38 42 | erref | ⊢ ( 𝐴 ∈ 𝑊 → ∅ ∼ ∅ ) |
| 44 | 36 43 | eqbrtrid | ⊢ ( 𝐴 ∈ 𝑊 → ( ∅ ++ ∅ ) ∼ ∅ ) |
| 45 | 37 | a1i | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ∼ Er 𝑊 ) |
| 46 | simprl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑎 ∈ Word ( 𝐼 × 2o ) ) | |
| 47 | revcl | ⊢ ( 𝑎 ∈ Word ( 𝐼 × 2o ) → ( reverse ‘ 𝑎 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 48 | 47 | ad2antrl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( reverse ‘ 𝑎 ) ∈ Word ( 𝐼 × 2o ) ) |
| 49 | 3 | efgmf | ⊢ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) |
| 50 | wrdco | ⊢ ( ( ( reverse ‘ 𝑎 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) → ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ∈ Word ( 𝐼 × 2o ) ) | |
| 51 | 48 49 50 | sylancl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 52 | ccatcl | ⊢ ( ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ∈ Word ( 𝐼 × 2o ) ) → ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ Word ( 𝐼 × 2o ) ) | |
| 53 | 46 51 52 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 54 | 41 | adantr | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 55 | 53 54 | eleqtrrd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ 𝑊 ) |
| 56 | lencl | ⊢ ( 𝑎 ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ 𝑎 ) ∈ ℕ0 ) | |
| 57 | 56 | ad2antrl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑎 ) ∈ ℕ0 ) |
| 58 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 59 | 57 58 | eleqtrdi | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑎 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 60 | ccatlen | ⊢ ( ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ∈ Word ( 𝐼 × 2o ) ) → ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) = ( ( ♯ ‘ 𝑎 ) + ( ♯ ‘ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) | |
| 61 | 46 51 60 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) = ( ( ♯ ‘ 𝑎 ) + ( ♯ ‘ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) |
| 62 | 57 | nn0zd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑎 ) ∈ ℤ ) |
| 63 | 62 | uzidd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑎 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑎 ) ) ) |
| 64 | lencl | ⊢ ( ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ ℕ0 ) | |
| 65 | 51 64 | syl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ ℕ0 ) |
| 66 | uzaddcl | ⊢ ( ( ( ♯ ‘ 𝑎 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑎 ) ) ∧ ( ♯ ‘ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑎 ) + ( ♯ ‘ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑎 ) ) ) | |
| 67 | 63 65 66 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝑎 ) + ( ♯ ‘ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑎 ) ) ) |
| 68 | 61 67 | eqeltrd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑎 ) ) ) |
| 69 | elfzuzb | ⊢ ( ( ♯ ‘ 𝑎 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) ↔ ( ( ♯ ‘ 𝑎 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑎 ) ) ) ) | |
| 70 | 59 68 69 | sylanbrc | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑎 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) ) |
| 71 | simprr | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑏 ∈ ( 𝐼 × 2o ) ) | |
| 72 | 1 2 3 4 | efgtval | ⊢ ( ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ 𝑊 ∧ ( ♯ ‘ 𝑎 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) → ( ( ♯ ‘ 𝑎 ) ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) 𝑏 ) = ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) splice 〈 ( ♯ ‘ 𝑎 ) , ( ♯ ‘ 𝑎 ) , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) |
| 73 | 55 70 71 72 | syl3anc | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝑎 ) ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) 𝑏 ) = ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) splice 〈 ( ♯ ‘ 𝑎 ) , ( ♯ ‘ 𝑎 ) , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) |
| 74 | 39 | a1i | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ∅ ∈ Word ( 𝐼 × 2o ) ) |
| 75 | 49 | ffvelcdmi | ⊢ ( 𝑏 ∈ ( 𝐼 × 2o ) → ( 𝑀 ‘ 𝑏 ) ∈ ( 𝐼 × 2o ) ) |
| 76 | 75 | ad2antll | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑀 ‘ 𝑏 ) ∈ ( 𝐼 × 2o ) ) |
| 77 | 71 76 | s2cld | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) |
| 78 | ccatrid | ⊢ ( 𝑎 ∈ Word ( 𝐼 × 2o ) → ( 𝑎 ++ ∅ ) = 𝑎 ) | |
| 79 | 78 | ad2antrl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑎 ++ ∅ ) = 𝑎 ) |
| 80 | 79 | eqcomd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑎 = ( 𝑎 ++ ∅ ) ) |
| 81 | 80 | oveq1d | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) = ( ( 𝑎 ++ ∅ ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) |
| 82 | eqidd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑎 ) = ( ♯ ‘ 𝑎 ) ) | |
| 83 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 84 | 83 | oveq2i | ⊢ ( ( ♯ ‘ 𝑎 ) + ( ♯ ‘ ∅ ) ) = ( ( ♯ ‘ 𝑎 ) + 0 ) |
| 85 | 57 | nn0cnd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑎 ) ∈ ℂ ) |
| 86 | 85 | addridd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝑎 ) + 0 ) = ( ♯ ‘ 𝑎 ) ) |
| 87 | 84 86 | eqtr2id | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 𝑎 ) = ( ( ♯ ‘ 𝑎 ) + ( ♯ ‘ ∅ ) ) ) |
| 88 | 46 74 51 77 81 82 87 | splval2 | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) splice 〈 ( ♯ ‘ 𝑎 ) , ( ♯ ‘ 𝑎 ) , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) = ( ( 𝑎 ++ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) |
| 89 | 71 | s1cld | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 〈“ 𝑏 ”〉 ∈ Word ( 𝐼 × 2o ) ) |
| 90 | revccat | ⊢ ( ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 〈“ 𝑏 ”〉 ∈ Word ( 𝐼 × 2o ) ) → ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) = ( ( reverse ‘ 〈“ 𝑏 ”〉 ) ++ ( reverse ‘ 𝑎 ) ) ) | |
| 91 | 46 89 90 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) = ( ( reverse ‘ 〈“ 𝑏 ”〉 ) ++ ( reverse ‘ 𝑎 ) ) ) |
| 92 | revs1 | ⊢ ( reverse ‘ 〈“ 𝑏 ”〉 ) = 〈“ 𝑏 ”〉 | |
| 93 | 92 | oveq1i | ⊢ ( ( reverse ‘ 〈“ 𝑏 ”〉 ) ++ ( reverse ‘ 𝑎 ) ) = ( 〈“ 𝑏 ”〉 ++ ( reverse ‘ 𝑎 ) ) |
| 94 | 91 93 | eqtrdi | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) = ( 〈“ 𝑏 ”〉 ++ ( reverse ‘ 𝑎 ) ) ) |
| 95 | 94 | coeq2d | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) = ( 𝑀 ∘ ( 〈“ 𝑏 ”〉 ++ ( reverse ‘ 𝑎 ) ) ) ) |
| 96 | 49 | a1i | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) |
| 97 | ccatco | ⊢ ( ( 〈“ 𝑏 ”〉 ∈ Word ( 𝐼 × 2o ) ∧ ( reverse ‘ 𝑎 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) → ( 𝑀 ∘ ( 〈“ 𝑏 ”〉 ++ ( reverse ‘ 𝑎 ) ) ) = ( ( 𝑀 ∘ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) | |
| 98 | 89 48 96 97 | syl3anc | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑀 ∘ ( 〈“ 𝑏 ”〉 ++ ( reverse ‘ 𝑎 ) ) ) = ( ( 𝑀 ∘ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) |
| 99 | s1co | ⊢ ( ( 𝑏 ∈ ( 𝐼 × 2o ) ∧ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) → ( 𝑀 ∘ 〈“ 𝑏 ”〉 ) = 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) | |
| 100 | 71 49 99 | sylancl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑀 ∘ 〈“ 𝑏 ”〉 ) = 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) |
| 101 | 100 | oveq1d | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑀 ∘ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) = ( 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) |
| 102 | 95 98 101 | 3eqtrd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) = ( 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) |
| 103 | 102 | oveq2d | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) = ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) |
| 104 | ccatcl | ⊢ ( ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 〈“ 𝑏 ”〉 ∈ Word ( 𝐼 × 2o ) ) → ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 105 | 46 89 104 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 106 | 76 | s1cld | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) |
| 107 | ccatass | ⊢ ( ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ∈ Word ( 𝐼 × 2o ) ∧ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ∈ Word ( 𝐼 × 2o ) ) → ( ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) = ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) | |
| 108 | 105 106 51 107 | syl3anc | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) = ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) |
| 109 | ccatass | ⊢ ( ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 〈“ 𝑏 ”〉 ∈ Word ( 𝐼 × 2o ) ∧ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) = ( 𝑎 ++ ( 〈“ 𝑏 ”〉 ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) ) ) | |
| 110 | 46 89 106 109 | syl3anc | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) = ( 𝑎 ++ ( 〈“ 𝑏 ”〉 ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) ) ) |
| 111 | df-s2 | ⊢ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 = ( 〈“ 𝑏 ”〉 ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) | |
| 112 | 111 | oveq2i | ⊢ ( 𝑎 ++ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ) = ( 𝑎 ++ ( 〈“ 𝑏 ”〉 ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) ) |
| 113 | 110 112 | eqtr4di | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) = ( 𝑎 ++ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ) ) |
| 114 | 113 | oveq1d | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ 〈“ ( 𝑀 ‘ 𝑏 ) ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) = ( ( 𝑎 ++ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) |
| 115 | 103 108 114 | 3eqtr2rd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑎 ++ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) = ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ) |
| 116 | 73 88 115 | 3eqtrd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝑎 ) ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) 𝑏 ) = ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ) |
| 117 | 1 2 3 4 | efgtf | ⊢ ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ 𝑊 → ( ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) = ( 𝑚 ∈ ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) , 𝑢 ∈ ( 𝐼 × 2o ) ↦ ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) splice 〈 𝑚 , 𝑚 , 〈“ 𝑢 ( 𝑀 ‘ 𝑢 ) ”〉 〉 ) ) ∧ ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |
| 118 | 117 | simprd | ⊢ ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ 𝑊 → ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) |
| 119 | 55 118 | syl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) |
| 120 | 119 | ffnd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) Fn ( ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) × ( 𝐼 × 2o ) ) ) |
| 121 | fnovrn | ⊢ ( ( ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) Fn ( ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) × ( 𝐼 × 2o ) ) ∧ ( ♯ ‘ 𝑎 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) → ( ( ♯ ‘ 𝑎 ) ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) 𝑏 ) ∈ ran ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) | |
| 122 | 120 70 71 121 | syl3anc | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝑎 ) ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) 𝑏 ) ∈ ran ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) |
| 123 | 116 122 | eqeltrrd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∈ ran ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) |
| 124 | 1 2 3 4 | efgi2 | ⊢ ( ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∈ 𝑊 ∧ ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∈ ran ( 𝑇 ‘ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) ) → ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∼ ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ) |
| 125 | 55 123 124 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∼ ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ) |
| 126 | 45 125 | ersym | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∼ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ) |
| 127 | 45 | ertr | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∼ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∧ ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∼ ∅ ) → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∼ ∅ ) ) |
| 128 | 126 127 | mpand | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∼ ∅ → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∼ ∅ ) ) |
| 129 | 128 | expcom | ⊢ ( ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) → ( 𝐴 ∈ 𝑊 → ( ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∼ ∅ → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∼ ∅ ) ) ) |
| 130 | 129 | a2d | ⊢ ( ( 𝑎 ∈ Word ( 𝐼 × 2o ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) → ( ( 𝐴 ∈ 𝑊 → ( 𝑎 ++ ( 𝑀 ∘ ( reverse ‘ 𝑎 ) ) ) ∼ ∅ ) → ( 𝐴 ∈ 𝑊 → ( ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑎 ++ 〈“ 𝑏 ”〉 ) ) ) ) ∼ ∅ ) ) ) |
| 131 | 17 23 29 35 44 130 | wrdind | ⊢ ( 𝐴 ∈ Word ( 𝐼 × 2o ) → ( 𝐴 ∈ 𝑊 → ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ∼ ∅ ) ) |
| 132 | 7 131 | mpcom | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝐴 ++ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ∼ ∅ ) |