This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efcvx | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < ( ( T x. ( exp ` A ) ) + ( ( 1 - T ) x. ( exp ` B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR ) |
|
| 2 | simpl2 | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR ) |
|
| 3 | simpl3 | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A < B ) |
|
| 4 | reeff1o | |- ( exp |` RR ) : RR -1-1-onto-> RR+ |
|
| 5 | f1of | |- ( ( exp |` RR ) : RR -1-1-onto-> RR+ -> ( exp |` RR ) : RR --> RR+ ) |
|
| 6 | 4 5 | ax-mp | |- ( exp |` RR ) : RR --> RR+ |
| 7 | rpssre | |- RR+ C_ RR |
|
| 8 | fss | |- ( ( ( exp |` RR ) : RR --> RR+ /\ RR+ C_ RR ) -> ( exp |` RR ) : RR --> RR ) |
|
| 9 | 6 7 8 | mp2an | |- ( exp |` RR ) : RR --> RR |
| 10 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 11 | 1 2 10 | syl2anc | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A [,] B ) C_ RR ) |
| 12 | fssres2 | |- ( ( ( exp |` RR ) : RR --> RR /\ ( A [,] B ) C_ RR ) -> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) |
|
| 13 | 9 11 12 | sylancr | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) |
| 14 | ax-resscn | |- RR C_ CC |
|
| 15 | 11 14 | sstrdi | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A [,] B ) C_ CC ) |
| 16 | efcn | |- exp e. ( CC -cn-> CC ) |
|
| 17 | rescncf | |- ( ( A [,] B ) C_ CC -> ( exp e. ( CC -cn-> CC ) -> ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
|
| 18 | 15 16 17 | mpisyl | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 19 | cncfcdm | |- ( ( RR C_ CC /\ ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) ) |
|
| 20 | 14 18 19 | sylancr | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) ) |
| 21 | 13 20 | mpbird | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 22 | reefiso | |- ( exp |` RR ) Isom < , < ( RR , RR+ ) |
|
| 23 | 22 | a1i | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` RR ) Isom < , < ( RR , RR+ ) ) |
| 24 | ioossre | |- ( A (,) B ) C_ RR |
|
| 25 | 24 | a1i | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A (,) B ) C_ RR ) |
| 26 | eqidd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` RR ) " ( A (,) B ) ) = ( ( exp |` RR ) " ( A (,) B ) ) ) |
|
| 27 | isores3 | |- ( ( ( exp |` RR ) Isom < , < ( RR , RR+ ) /\ ( A (,) B ) C_ RR /\ ( ( exp |` RR ) " ( A (,) B ) ) = ( ( exp |` RR ) " ( A (,) B ) ) ) -> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) |
|
| 28 | 23 25 26 27 | syl3anc | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) |
| 29 | ssid | |- RR C_ RR |
|
| 30 | fss | |- ( ( ( exp |` RR ) : RR --> RR /\ RR C_ CC ) -> ( exp |` RR ) : RR --> CC ) |
|
| 31 | 9 14 30 | mp2an | |- ( exp |` RR ) : RR --> CC |
| 32 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 33 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 34 | 32 33 | dvres | |- ( ( ( RR C_ CC /\ ( exp |` RR ) : RR --> CC ) /\ ( RR C_ RR /\ ( A [,] B ) C_ RR ) ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 35 | 14 31 34 | mpanl12 | |- ( ( RR C_ RR /\ ( A [,] B ) C_ RR ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 36 | 29 11 35 | sylancr | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 37 | 11 | resabs1d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` RR ) |` ( A [,] B ) ) = ( exp |` ( A [,] B ) ) ) |
| 38 | 37 | oveq2d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( RR _D ( exp |` ( A [,] B ) ) ) ) |
| 39 | reelprrecn | |- RR e. { RR , CC } |
|
| 40 | eff | |- exp : CC --> CC |
|
| 41 | ssid | |- CC C_ CC |
|
| 42 | dvef | |- ( CC _D exp ) = exp |
|
| 43 | 42 | dmeqi | |- dom ( CC _D exp ) = dom exp |
| 44 | 40 | fdmi | |- dom exp = CC |
| 45 | 43 44 | eqtri | |- dom ( CC _D exp ) = CC |
| 46 | 14 45 | sseqtrri | |- RR C_ dom ( CC _D exp ) |
| 47 | dvres3 | |- ( ( ( RR e. { RR , CC } /\ exp : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D exp ) ) ) -> ( RR _D ( exp |` RR ) ) = ( ( CC _D exp ) |` RR ) ) |
|
| 48 | 39 40 41 46 47 | mp4an | |- ( RR _D ( exp |` RR ) ) = ( ( CC _D exp ) |` RR ) |
| 49 | 42 | reseq1i | |- ( ( CC _D exp ) |` RR ) = ( exp |` RR ) |
| 50 | 48 49 | eqtri | |- ( RR _D ( exp |` RR ) ) = ( exp |` RR ) |
| 51 | 50 | a1i | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( exp |` RR ) ) = ( exp |` RR ) ) |
| 52 | iccntr | |- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
|
| 53 | 1 2 52 | syl2anc | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 54 | 51 53 | reseq12d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) = ( ( exp |` RR ) |` ( A (,) B ) ) ) |
| 55 | 36 38 54 | 3eqtr3d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( exp |` ( A [,] B ) ) ) = ( ( exp |` RR ) |` ( A (,) B ) ) ) |
| 56 | isoeq1 | |- ( ( RR _D ( exp |` ( A [,] B ) ) ) = ( ( exp |` RR ) |` ( A (,) B ) ) -> ( ( RR _D ( exp |` ( A [,] B ) ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) <-> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) ) |
|
| 57 | 55 56 | syl | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( RR _D ( exp |` ( A [,] B ) ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) <-> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) ) |
| 58 | 28 57 | mpbird | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( exp |` ( A [,] B ) ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) |
| 59 | simpr | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. ( 0 (,) 1 ) ) |
|
| 60 | eqid | |- ( ( T x. A ) + ( ( 1 - T ) x. B ) ) = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) |
|
| 61 | 1 2 3 21 58 59 60 | dvcvx | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < ( ( T x. ( ( exp |` ( A [,] B ) ) ` A ) ) + ( ( 1 - T ) x. ( ( exp |` ( A [,] B ) ) ` B ) ) ) ) |
| 62 | ax-1cn | |- 1 e. CC |
|
| 63 | ioossre | |- ( 0 (,) 1 ) C_ RR |
|
| 64 | 63 59 | sselid | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. RR ) |
| 65 | 64 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. CC ) |
| 66 | nncan | |- ( ( 1 e. CC /\ T e. CC ) -> ( 1 - ( 1 - T ) ) = T ) |
|
| 67 | 62 65 66 | sylancr | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - ( 1 - T ) ) = T ) |
| 68 | 67 | oveq1d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - ( 1 - T ) ) x. A ) = ( T x. A ) ) |
| 69 | 68 | oveq1d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) |
| 70 | ioossicc | |- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
|
| 71 | 70 59 | sselid | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. ( 0 [,] 1 ) ) |
| 72 | iirev | |- ( T e. ( 0 [,] 1 ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) |
|
| 73 | 71 72 | syl | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) |
| 74 | lincmb01cmp | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( 1 - T ) e. ( 0 [,] 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
|
| 75 | 73 74 | syldan | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
| 76 | 69 75 | eqeltrrd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
| 77 | 76 | fvresd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = ( exp ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
| 78 | 1 | rexrd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR* ) |
| 79 | 2 | rexrd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR* ) |
| 80 | 1 2 3 | ltled | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A <_ B ) |
| 81 | lbicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
|
| 82 | 78 79 80 81 | syl3anc | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. ( A [,] B ) ) |
| 83 | 82 | fvresd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` A ) = ( exp ` A ) ) |
| 84 | 83 | oveq2d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. ( ( exp |` ( A [,] B ) ) ` A ) ) = ( T x. ( exp ` A ) ) ) |
| 85 | ubicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
|
| 86 | 78 79 80 85 | syl3anc | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. ( A [,] B ) ) |
| 87 | 86 | fvresd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` B ) = ( exp ` B ) ) |
| 88 | 87 | oveq2d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. ( ( exp |` ( A [,] B ) ) ` B ) ) = ( ( 1 - T ) x. ( exp ` B ) ) ) |
| 89 | 84 88 | oveq12d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( ( exp |` ( A [,] B ) ) ` A ) ) + ( ( 1 - T ) x. ( ( exp |` ( A [,] B ) ) ` B ) ) ) = ( ( T x. ( exp ` A ) ) + ( ( 1 - T ) x. ( exp ` B ) ) ) ) |
| 90 | 61 77 89 | 3brtr3d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < ( ( T x. ( exp ` A ) ) + ( ( 1 - T ) x. ( exp ` B ) ) ) ) |