This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 10-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reeff1o | |- ( exp |` RR ) : RR -1-1-onto-> RR+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reeff1 | |- ( exp |` RR ) : RR -1-1-> RR+ |
|
| 2 | f1f | |- ( ( exp |` RR ) : RR -1-1-> RR+ -> ( exp |` RR ) : RR --> RR+ ) |
|
| 3 | ffn | |- ( ( exp |` RR ) : RR --> RR+ -> ( exp |` RR ) Fn RR ) |
|
| 4 | 1 2 3 | mp2b | |- ( exp |` RR ) Fn RR |
| 5 | frn | |- ( ( exp |` RR ) : RR --> RR+ -> ran ( exp |` RR ) C_ RR+ ) |
|
| 6 | 1 2 5 | mp2b | |- ran ( exp |` RR ) C_ RR+ |
| 7 | elrp | |- ( z e. RR+ <-> ( z e. RR /\ 0 < z ) ) |
|
| 8 | reclt1 | |- ( ( z e. RR /\ 0 < z ) -> ( z < 1 <-> 1 < ( 1 / z ) ) ) |
|
| 9 | 7 8 | sylbi | |- ( z e. RR+ -> ( z < 1 <-> 1 < ( 1 / z ) ) ) |
| 10 | rpre | |- ( z e. RR+ -> z e. RR ) |
|
| 11 | rpne0 | |- ( z e. RR+ -> z =/= 0 ) |
|
| 12 | 10 11 | rereccld | |- ( z e. RR+ -> ( 1 / z ) e. RR ) |
| 13 | reeff1olem | |- ( ( ( 1 / z ) e. RR /\ 1 < ( 1 / z ) ) -> E. y e. RR ( exp ` y ) = ( 1 / z ) ) |
|
| 14 | 12 13 | sylan | |- ( ( z e. RR+ /\ 1 < ( 1 / z ) ) -> E. y e. RR ( exp ` y ) = ( 1 / z ) ) |
| 15 | eqcom | |- ( ( 1 / z ) = ( exp ` y ) <-> ( exp ` y ) = ( 1 / z ) ) |
|
| 16 | rpcnne0 | |- ( z e. RR+ -> ( z e. CC /\ z =/= 0 ) ) |
|
| 17 | recn | |- ( y e. RR -> y e. CC ) |
|
| 18 | efcl | |- ( y e. CC -> ( exp ` y ) e. CC ) |
|
| 19 | 17 18 | syl | |- ( y e. RR -> ( exp ` y ) e. CC ) |
| 20 | efne0 | |- ( y e. CC -> ( exp ` y ) =/= 0 ) |
|
| 21 | 17 20 | syl | |- ( y e. RR -> ( exp ` y ) =/= 0 ) |
| 22 | 19 21 | jca | |- ( y e. RR -> ( ( exp ` y ) e. CC /\ ( exp ` y ) =/= 0 ) ) |
| 23 | rec11r | |- ( ( ( z e. CC /\ z =/= 0 ) /\ ( ( exp ` y ) e. CC /\ ( exp ` y ) =/= 0 ) ) -> ( ( 1 / z ) = ( exp ` y ) <-> ( 1 / ( exp ` y ) ) = z ) ) |
|
| 24 | 16 22 23 | syl2an | |- ( ( z e. RR+ /\ y e. RR ) -> ( ( 1 / z ) = ( exp ` y ) <-> ( 1 / ( exp ` y ) ) = z ) ) |
| 25 | efcan | |- ( y e. CC -> ( ( exp ` y ) x. ( exp ` -u y ) ) = 1 ) |
|
| 26 | 25 | eqcomd | |- ( y e. CC -> 1 = ( ( exp ` y ) x. ( exp ` -u y ) ) ) |
| 27 | negcl | |- ( y e. CC -> -u y e. CC ) |
|
| 28 | efcl | |- ( -u y e. CC -> ( exp ` -u y ) e. CC ) |
|
| 29 | 27 28 | syl | |- ( y e. CC -> ( exp ` -u y ) e. CC ) |
| 30 | ax-1cn | |- 1 e. CC |
|
| 31 | divmul2 | |- ( ( 1 e. CC /\ ( exp ` -u y ) e. CC /\ ( ( exp ` y ) e. CC /\ ( exp ` y ) =/= 0 ) ) -> ( ( 1 / ( exp ` y ) ) = ( exp ` -u y ) <-> 1 = ( ( exp ` y ) x. ( exp ` -u y ) ) ) ) |
|
| 32 | 30 31 | mp3an1 | |- ( ( ( exp ` -u y ) e. CC /\ ( ( exp ` y ) e. CC /\ ( exp ` y ) =/= 0 ) ) -> ( ( 1 / ( exp ` y ) ) = ( exp ` -u y ) <-> 1 = ( ( exp ` y ) x. ( exp ` -u y ) ) ) ) |
| 33 | 29 18 20 32 | syl12anc | |- ( y e. CC -> ( ( 1 / ( exp ` y ) ) = ( exp ` -u y ) <-> 1 = ( ( exp ` y ) x. ( exp ` -u y ) ) ) ) |
| 34 | 26 33 | mpbird | |- ( y e. CC -> ( 1 / ( exp ` y ) ) = ( exp ` -u y ) ) |
| 35 | 17 34 | syl | |- ( y e. RR -> ( 1 / ( exp ` y ) ) = ( exp ` -u y ) ) |
| 36 | 35 | eqeq1d | |- ( y e. RR -> ( ( 1 / ( exp ` y ) ) = z <-> ( exp ` -u y ) = z ) ) |
| 37 | 36 | adantl | |- ( ( z e. RR+ /\ y e. RR ) -> ( ( 1 / ( exp ` y ) ) = z <-> ( exp ` -u y ) = z ) ) |
| 38 | 24 37 | bitrd | |- ( ( z e. RR+ /\ y e. RR ) -> ( ( 1 / z ) = ( exp ` y ) <-> ( exp ` -u y ) = z ) ) |
| 39 | 15 38 | bitr3id | |- ( ( z e. RR+ /\ y e. RR ) -> ( ( exp ` y ) = ( 1 / z ) <-> ( exp ` -u y ) = z ) ) |
| 40 | 39 | biimpd | |- ( ( z e. RR+ /\ y e. RR ) -> ( ( exp ` y ) = ( 1 / z ) -> ( exp ` -u y ) = z ) ) |
| 41 | 40 | reximdva | |- ( z e. RR+ -> ( E. y e. RR ( exp ` y ) = ( 1 / z ) -> E. y e. RR ( exp ` -u y ) = z ) ) |
| 42 | 41 | adantr | |- ( ( z e. RR+ /\ 1 < ( 1 / z ) ) -> ( E. y e. RR ( exp ` y ) = ( 1 / z ) -> E. y e. RR ( exp ` -u y ) = z ) ) |
| 43 | 14 42 | mpd | |- ( ( z e. RR+ /\ 1 < ( 1 / z ) ) -> E. y e. RR ( exp ` -u y ) = z ) |
| 44 | renegcl | |- ( y e. RR -> -u y e. RR ) |
|
| 45 | infm3lem | |- ( x e. RR -> E. y e. RR x = -u y ) |
|
| 46 | fveqeq2 | |- ( x = -u y -> ( ( exp ` x ) = z <-> ( exp ` -u y ) = z ) ) |
|
| 47 | 44 45 46 | rexxfr | |- ( E. x e. RR ( exp ` x ) = z <-> E. y e. RR ( exp ` -u y ) = z ) |
| 48 | 43 47 | sylibr | |- ( ( z e. RR+ /\ 1 < ( 1 / z ) ) -> E. x e. RR ( exp ` x ) = z ) |
| 49 | 48 | ex | |- ( z e. RR+ -> ( 1 < ( 1 / z ) -> E. x e. RR ( exp ` x ) = z ) ) |
| 50 | 9 49 | sylbid | |- ( z e. RR+ -> ( z < 1 -> E. x e. RR ( exp ` x ) = z ) ) |
| 51 | 50 | imp | |- ( ( z e. RR+ /\ z < 1 ) -> E. x e. RR ( exp ` x ) = z ) |
| 52 | ef0 | |- ( exp ` 0 ) = 1 |
|
| 53 | 52 | eqeq2i | |- ( z = ( exp ` 0 ) <-> z = 1 ) |
| 54 | 0re | |- 0 e. RR |
|
| 55 | fveqeq2 | |- ( x = 0 -> ( ( exp ` x ) = z <-> ( exp ` 0 ) = z ) ) |
|
| 56 | 55 | rspcev | |- ( ( 0 e. RR /\ ( exp ` 0 ) = z ) -> E. x e. RR ( exp ` x ) = z ) |
| 57 | 54 56 | mpan | |- ( ( exp ` 0 ) = z -> E. x e. RR ( exp ` x ) = z ) |
| 58 | 57 | eqcoms | |- ( z = ( exp ` 0 ) -> E. x e. RR ( exp ` x ) = z ) |
| 59 | 53 58 | sylbir | |- ( z = 1 -> E. x e. RR ( exp ` x ) = z ) |
| 60 | 59 | adantl | |- ( ( z e. RR+ /\ z = 1 ) -> E. x e. RR ( exp ` x ) = z ) |
| 61 | reeff1olem | |- ( ( z e. RR /\ 1 < z ) -> E. x e. RR ( exp ` x ) = z ) |
|
| 62 | 10 61 | sylan | |- ( ( z e. RR+ /\ 1 < z ) -> E. x e. RR ( exp ` x ) = z ) |
| 63 | 1re | |- 1 e. RR |
|
| 64 | lttri4 | |- ( ( z e. RR /\ 1 e. RR ) -> ( z < 1 \/ z = 1 \/ 1 < z ) ) |
|
| 65 | 10 63 64 | sylancl | |- ( z e. RR+ -> ( z < 1 \/ z = 1 \/ 1 < z ) ) |
| 66 | 51 60 62 65 | mpjao3dan | |- ( z e. RR+ -> E. x e. RR ( exp ` x ) = z ) |
| 67 | fvres | |- ( x e. RR -> ( ( exp |` RR ) ` x ) = ( exp ` x ) ) |
|
| 68 | 67 | eqeq1d | |- ( x e. RR -> ( ( ( exp |` RR ) ` x ) = z <-> ( exp ` x ) = z ) ) |
| 69 | 68 | rexbiia | |- ( E. x e. RR ( ( exp |` RR ) ` x ) = z <-> E. x e. RR ( exp ` x ) = z ) |
| 70 | 66 69 | sylibr | |- ( z e. RR+ -> E. x e. RR ( ( exp |` RR ) ` x ) = z ) |
| 71 | fvelrnb | |- ( ( exp |` RR ) Fn RR -> ( z e. ran ( exp |` RR ) <-> E. x e. RR ( ( exp |` RR ) ` x ) = z ) ) |
|
| 72 | 4 71 | ax-mp | |- ( z e. ran ( exp |` RR ) <-> E. x e. RR ( ( exp |` RR ) ` x ) = z ) |
| 73 | 70 72 | sylibr | |- ( z e. RR+ -> z e. ran ( exp |` RR ) ) |
| 74 | 73 | ssriv | |- RR+ C_ ran ( exp |` RR ) |
| 75 | 6 74 | eqssi | |- ran ( exp |` RR ) = RR+ |
| 76 | df-fo | |- ( ( exp |` RR ) : RR -onto-> RR+ <-> ( ( exp |` RR ) Fn RR /\ ran ( exp |` RR ) = RR+ ) ) |
|
| 77 | 4 75 76 | mpbir2an | |- ( exp |` RR ) : RR -onto-> RR+ |
| 78 | df-f1o | |- ( ( exp |` RR ) : RR -1-1-onto-> RR+ <-> ( ( exp |` RR ) : RR -1-1-> RR+ /\ ( exp |` RR ) : RR -onto-> RR+ ) ) |
|
| 79 | 1 77 78 | mpbir2an | |- ( exp |` RR ) : RR -1-1-onto-> RR+ |