This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015) (Revised by Thierry Arnoux, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | reefgim.1 | |- P = ( ( mulGrp ` CCfld ) |`s RR+ ) |
|
| Assertion | reefgim | |- ( exp |` RR ) e. ( RRfld GrpIso P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reefgim.1 | |- P = ( ( mulGrp ` CCfld ) |`s RR+ ) |
|
| 2 | rebase | |- RR = ( Base ` RRfld ) |
|
| 3 | eqid | |- ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
|
| 4 | 3 | rpmsubg | |- RR+ e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) |
| 5 | cnex | |- CC e. _V |
|
| 6 | 5 | difexi | |- ( CC \ { 0 } ) e. _V |
| 7 | rpcndif0 | |- ( x e. RR+ -> x e. ( CC \ { 0 } ) ) |
|
| 8 | 7 | ssriv | |- RR+ C_ ( CC \ { 0 } ) |
| 9 | ressabs | |- ( ( ( CC \ { 0 } ) e. _V /\ RR+ C_ ( CC \ { 0 } ) ) -> ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s RR+ ) = ( ( mulGrp ` CCfld ) |`s RR+ ) ) |
|
| 10 | 6 8 9 | mp2an | |- ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s RR+ ) = ( ( mulGrp ` CCfld ) |`s RR+ ) |
| 11 | 1 10 | eqtr4i | |- P = ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s RR+ ) |
| 12 | 11 | subgbas | |- ( RR+ e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) -> RR+ = ( Base ` P ) ) |
| 13 | 4 12 | ax-mp | |- RR+ = ( Base ` P ) |
| 14 | replusg | |- + = ( +g ` RRfld ) |
|
| 15 | eqid | |- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
|
| 16 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 17 | 15 16 | mgpplusg | |- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 18 | 1 17 | ressplusg | |- ( RR+ e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) -> x. = ( +g ` P ) ) |
| 19 | 4 18 | ax-mp | |- x. = ( +g ` P ) |
| 20 | resubdrg | |- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
|
| 21 | 20 | simpli | |- RR e. ( SubRing ` CCfld ) |
| 22 | df-refld | |- RRfld = ( CCfld |`s RR ) |
|
| 23 | 22 | subrgring | |- ( RR e. ( SubRing ` CCfld ) -> RRfld e. Ring ) |
| 24 | 21 23 | ax-mp | |- RRfld e. Ring |
| 25 | ringgrp | |- ( RRfld e. Ring -> RRfld e. Grp ) |
|
| 26 | 24 25 | mp1i | |- ( T. -> RRfld e. Grp ) |
| 27 | 11 | subggrp | |- ( RR+ e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) -> P e. Grp ) |
| 28 | 4 27 | mp1i | |- ( T. -> P e. Grp ) |
| 29 | reeff1o | |- ( exp |` RR ) : RR -1-1-onto-> RR+ |
|
| 30 | f1of | |- ( ( exp |` RR ) : RR -1-1-onto-> RR+ -> ( exp |` RR ) : RR --> RR+ ) |
|
| 31 | 29 30 | mp1i | |- ( T. -> ( exp |` RR ) : RR --> RR+ ) |
| 32 | recn | |- ( x e. RR -> x e. CC ) |
|
| 33 | recn | |- ( y e. RR -> y e. CC ) |
|
| 34 | efadd | |- ( ( x e. CC /\ y e. CC ) -> ( exp ` ( x + y ) ) = ( ( exp ` x ) x. ( exp ` y ) ) ) |
|
| 35 | 32 33 34 | syl2an | |- ( ( x e. RR /\ y e. RR ) -> ( exp ` ( x + y ) ) = ( ( exp ` x ) x. ( exp ` y ) ) ) |
| 36 | readdcl | |- ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) |
|
| 37 | 36 | fvresd | |- ( ( x e. RR /\ y e. RR ) -> ( ( exp |` RR ) ` ( x + y ) ) = ( exp ` ( x + y ) ) ) |
| 38 | fvres | |- ( x e. RR -> ( ( exp |` RR ) ` x ) = ( exp ` x ) ) |
|
| 39 | fvres | |- ( y e. RR -> ( ( exp |` RR ) ` y ) = ( exp ` y ) ) |
|
| 40 | 38 39 | oveqan12d | |- ( ( x e. RR /\ y e. RR ) -> ( ( ( exp |` RR ) ` x ) x. ( ( exp |` RR ) ` y ) ) = ( ( exp ` x ) x. ( exp ` y ) ) ) |
| 41 | 35 37 40 | 3eqtr4d | |- ( ( x e. RR /\ y e. RR ) -> ( ( exp |` RR ) ` ( x + y ) ) = ( ( ( exp |` RR ) ` x ) x. ( ( exp |` RR ) ` y ) ) ) |
| 42 | 41 | adantl | |- ( ( T. /\ ( x e. RR /\ y e. RR ) ) -> ( ( exp |` RR ) ` ( x + y ) ) = ( ( ( exp |` RR ) ` x ) x. ( ( exp |` RR ) ` y ) ) ) |
| 43 | 2 13 14 19 26 28 31 42 | isghmd | |- ( T. -> ( exp |` RR ) e. ( RRfld GrpHom P ) ) |
| 44 | 43 | mptru | |- ( exp |` RR ) e. ( RRfld GrpHom P ) |
| 45 | 2 13 | isgim | |- ( ( exp |` RR ) e. ( RRfld GrpIso P ) <-> ( ( exp |` RR ) e. ( RRfld GrpHom P ) /\ ( exp |` RR ) : RR -1-1-onto-> RR+ ) ) |
| 46 | 44 29 45 | mpbir2an | |- ( exp |` RR ) e. ( RRfld GrpIso P ) |