This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efcvx | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( exp ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) < ( ( 𝑇 · ( exp ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( exp ‘ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ℝ ) | |
| 2 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 ∈ ℝ ) | |
| 3 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 < 𝐵 ) | |
| 4 | reeff1o | ⊢ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ | |
| 5 | f1of | ⊢ ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ → ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ) | |
| 6 | 4 5 | ax-mp | ⊢ ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ |
| 7 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
| 8 | fss | ⊢ ( ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ∧ ℝ+ ⊆ ℝ ) → ( exp ↾ ℝ ) : ℝ ⟶ ℝ ) | |
| 9 | 6 7 8 | mp2an | ⊢ ( exp ↾ ℝ ) : ℝ ⟶ ℝ |
| 10 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 11 | 1 2 10 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 12 | fssres2 | ⊢ ( ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( exp ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 13 | 9 11 12 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( exp ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 14 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 15 | 11 14 | sstrdi | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 16 | efcn | ⊢ exp ∈ ( ℂ –cn→ ℂ ) | |
| 17 | rescncf | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ → ( exp ∈ ( ℂ –cn→ ℂ ) → ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) | |
| 18 | 15 16 17 | mpisyl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 19 | cncfcdm | ⊢ ( ( ℝ ⊆ ℂ ∧ ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ↔ ( exp ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) | |
| 20 | 14 18 19 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ↔ ( exp ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) |
| 21 | 13 20 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 22 | reefiso | ⊢ ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) | |
| 23 | 22 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) ) |
| 24 | ioossre | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ | |
| 25 | 24 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 26 | eqidd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) = ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) | |
| 27 | isores3 | ⊢ ( ( ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ∧ ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) = ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) → ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ) | |
| 28 | 23 25 26 27 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ) |
| 29 | ssid | ⊢ ℝ ⊆ ℝ | |
| 30 | fss | ⊢ ( ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ( exp ↾ ℝ ) : ℝ ⟶ ℂ ) | |
| 31 | 9 14 30 | mp2an | ⊢ ( exp ↾ ℝ ) : ℝ ⟶ ℂ |
| 32 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 33 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 34 | 32 33 | dvres | ⊢ ( ( ( ℝ ⊆ ℂ ∧ ( exp ↾ ℝ ) : ℝ ⟶ ℂ ) ∧ ( ℝ ⊆ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) ) → ( ℝ D ( ( exp ↾ ℝ ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( exp ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 35 | 14 31 34 | mpanl12 | ⊢ ( ( ℝ ⊆ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( ℝ D ( ( exp ↾ ℝ ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( exp ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 36 | 29 11 35 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( ( exp ↾ ℝ ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( exp ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 37 | 11 | resabs1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ℝ ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) |
| 38 | 37 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( ( exp ↾ ℝ ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 39 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 40 | eff | ⊢ exp : ℂ ⟶ ℂ | |
| 41 | ssid | ⊢ ℂ ⊆ ℂ | |
| 42 | dvef | ⊢ ( ℂ D exp ) = exp | |
| 43 | 42 | dmeqi | ⊢ dom ( ℂ D exp ) = dom exp |
| 44 | 40 | fdmi | ⊢ dom exp = ℂ |
| 45 | 43 44 | eqtri | ⊢ dom ( ℂ D exp ) = ℂ |
| 46 | 14 45 | sseqtrri | ⊢ ℝ ⊆ dom ( ℂ D exp ) |
| 47 | dvres3 | ⊢ ( ( ( ℝ ∈ { ℝ , ℂ } ∧ exp : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ℝ ⊆ dom ( ℂ D exp ) ) ) → ( ℝ D ( exp ↾ ℝ ) ) = ( ( ℂ D exp ) ↾ ℝ ) ) | |
| 48 | 39 40 41 46 47 | mp4an | ⊢ ( ℝ D ( exp ↾ ℝ ) ) = ( ( ℂ D exp ) ↾ ℝ ) |
| 49 | 42 | reseq1i | ⊢ ( ( ℂ D exp ) ↾ ℝ ) = ( exp ↾ ℝ ) |
| 50 | 48 49 | eqtri | ⊢ ( ℝ D ( exp ↾ ℝ ) ) = ( exp ↾ ℝ ) |
| 51 | 50 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( exp ↾ ℝ ) ) = ( exp ↾ ℝ ) ) |
| 52 | iccntr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) | |
| 53 | 1 2 52 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 54 | 51 53 | reseq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ℝ D ( exp ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) = ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
| 55 | 36 38 54 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
| 56 | isoeq1 | ⊢ ( ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ↔ ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ) ) | |
| 57 | 55 56 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ↔ ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ) ) |
| 58 | 28 57 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ) |
| 59 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ( 0 (,) 1 ) ) | |
| 60 | eqid | ⊢ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) = ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) | |
| 61 | 1 2 3 21 58 59 60 | dvcvx | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) < ( ( 𝑇 · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) ) ) ) |
| 62 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 63 | ioossre | ⊢ ( 0 (,) 1 ) ⊆ ℝ | |
| 64 | 63 59 | sselid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ℝ ) |
| 65 | 64 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ℂ ) |
| 66 | nncan | ⊢ ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) | |
| 67 | 62 65 66 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
| 68 | 67 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) = ( 𝑇 · 𝐴 ) ) |
| 69 | 68 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) = ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) |
| 70 | ioossicc | ⊢ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) | |
| 71 | 70 59 | sselid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ( 0 [,] 1 ) ) |
| 72 | iirev | ⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) | |
| 73 | 71 72 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) |
| 74 | lincmb01cmp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 75 | 73 74 | syldan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 76 | 69 75 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 77 | 76 | fvresd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) = ( exp ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ) |
| 78 | 1 | rexrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ℝ* ) |
| 79 | 2 | rexrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 ∈ ℝ* ) |
| 80 | 1 2 3 | ltled | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ≤ 𝐵 ) |
| 81 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 82 | 78 79 80 81 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 83 | 82 | fvresd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) = ( exp ‘ 𝐴 ) ) |
| 84 | 83 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑇 · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) = ( 𝑇 · ( exp ‘ 𝐴 ) ) ) |
| 85 | ubicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 86 | 78 79 80 85 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 87 | 86 | fvresd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) = ( exp ‘ 𝐵 ) ) |
| 88 | 87 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑇 ) · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) ) = ( ( 1 − 𝑇 ) · ( exp ‘ 𝐵 ) ) ) |
| 89 | 84 88 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) ) ) = ( ( 𝑇 · ( exp ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( exp ‘ 𝐵 ) ) ) ) |
| 90 | 61 77 89 | 3brtr3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( exp ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) < ( ( 𝑇 · ( exp ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( exp ‘ 𝐵 ) ) ) ) |