This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isores3 | |- ( ( H Isom R , S ( A , B ) /\ K C_ A /\ X = ( H " K ) ) -> ( H |` K ) Isom R , S ( K , X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of1 | |- ( H : A -1-1-onto-> B -> H : A -1-1-> B ) |
|
| 2 | f1ores | |- ( ( H : A -1-1-> B /\ K C_ A ) -> ( H |` K ) : K -1-1-onto-> ( H " K ) ) |
|
| 3 | 2 | expcom | |- ( K C_ A -> ( H : A -1-1-> B -> ( H |` K ) : K -1-1-onto-> ( H " K ) ) ) |
| 4 | 1 3 | syl5 | |- ( K C_ A -> ( H : A -1-1-onto-> B -> ( H |` K ) : K -1-1-onto-> ( H " K ) ) ) |
| 5 | ssralv | |- ( K C_ A -> ( A. a e. A A. b e. A ( a R b <-> ( H ` a ) S ( H ` b ) ) -> A. a e. K A. b e. A ( a R b <-> ( H ` a ) S ( H ` b ) ) ) ) |
|
| 6 | ssralv | |- ( K C_ A -> ( A. b e. A ( a R b <-> ( H ` a ) S ( H ` b ) ) -> A. b e. K ( a R b <-> ( H ` a ) S ( H ` b ) ) ) ) |
|
| 7 | 6 | adantr | |- ( ( K C_ A /\ a e. K ) -> ( A. b e. A ( a R b <-> ( H ` a ) S ( H ` b ) ) -> A. b e. K ( a R b <-> ( H ` a ) S ( H ` b ) ) ) ) |
| 8 | fvres | |- ( a e. K -> ( ( H |` K ) ` a ) = ( H ` a ) ) |
|
| 9 | fvres | |- ( b e. K -> ( ( H |` K ) ` b ) = ( H ` b ) ) |
|
| 10 | 8 9 | breqan12d | |- ( ( a e. K /\ b e. K ) -> ( ( ( H |` K ) ` a ) S ( ( H |` K ) ` b ) <-> ( H ` a ) S ( H ` b ) ) ) |
| 11 | 10 | adantll | |- ( ( ( K C_ A /\ a e. K ) /\ b e. K ) -> ( ( ( H |` K ) ` a ) S ( ( H |` K ) ` b ) <-> ( H ` a ) S ( H ` b ) ) ) |
| 12 | 11 | bibi2d | |- ( ( ( K C_ A /\ a e. K ) /\ b e. K ) -> ( ( a R b <-> ( ( H |` K ) ` a ) S ( ( H |` K ) ` b ) ) <-> ( a R b <-> ( H ` a ) S ( H ` b ) ) ) ) |
| 13 | 12 | biimprd | |- ( ( ( K C_ A /\ a e. K ) /\ b e. K ) -> ( ( a R b <-> ( H ` a ) S ( H ` b ) ) -> ( a R b <-> ( ( H |` K ) ` a ) S ( ( H |` K ) ` b ) ) ) ) |
| 14 | 13 | ralimdva | |- ( ( K C_ A /\ a e. K ) -> ( A. b e. K ( a R b <-> ( H ` a ) S ( H ` b ) ) -> A. b e. K ( a R b <-> ( ( H |` K ) ` a ) S ( ( H |` K ) ` b ) ) ) ) |
| 15 | 7 14 | syld | |- ( ( K C_ A /\ a e. K ) -> ( A. b e. A ( a R b <-> ( H ` a ) S ( H ` b ) ) -> A. b e. K ( a R b <-> ( ( H |` K ) ` a ) S ( ( H |` K ) ` b ) ) ) ) |
| 16 | 15 | ralimdva | |- ( K C_ A -> ( A. a e. K A. b e. A ( a R b <-> ( H ` a ) S ( H ` b ) ) -> A. a e. K A. b e. K ( a R b <-> ( ( H |` K ) ` a ) S ( ( H |` K ) ` b ) ) ) ) |
| 17 | 5 16 | syld | |- ( K C_ A -> ( A. a e. A A. b e. A ( a R b <-> ( H ` a ) S ( H ` b ) ) -> A. a e. K A. b e. K ( a R b <-> ( ( H |` K ) ` a ) S ( ( H |` K ) ` b ) ) ) ) |
| 18 | 4 17 | anim12d | |- ( K C_ A -> ( ( H : A -1-1-onto-> B /\ A. a e. A A. b e. A ( a R b <-> ( H ` a ) S ( H ` b ) ) ) -> ( ( H |` K ) : K -1-1-onto-> ( H " K ) /\ A. a e. K A. b e. K ( a R b <-> ( ( H |` K ) ` a ) S ( ( H |` K ) ` b ) ) ) ) ) |
| 19 | df-isom | |- ( H Isom R , S ( A , B ) <-> ( H : A -1-1-onto-> B /\ A. a e. A A. b e. A ( a R b <-> ( H ` a ) S ( H ` b ) ) ) ) |
|
| 20 | df-isom | |- ( ( H |` K ) Isom R , S ( K , ( H " K ) ) <-> ( ( H |` K ) : K -1-1-onto-> ( H " K ) /\ A. a e. K A. b e. K ( a R b <-> ( ( H |` K ) ` a ) S ( ( H |` K ) ` b ) ) ) ) |
|
| 21 | 18 19 20 | 3imtr4g | |- ( K C_ A -> ( H Isom R , S ( A , B ) -> ( H |` K ) Isom R , S ( K , ( H " K ) ) ) ) |
| 22 | 21 | impcom | |- ( ( H Isom R , S ( A , B ) /\ K C_ A ) -> ( H |` K ) Isom R , S ( K , ( H " K ) ) ) |
| 23 | isoeq5 | |- ( X = ( H " K ) -> ( ( H |` K ) Isom R , S ( K , X ) <-> ( H |` K ) Isom R , S ( K , ( H " K ) ) ) ) |
|
| 24 | 22 23 | syl5ibrcom | |- ( ( H Isom R , S ( A , B ) /\ K C_ A ) -> ( X = ( H " K ) -> ( H |` K ) Isom R , S ( K , X ) ) ) |
| 25 | 24 | 3impia | |- ( ( H Isom R , S ( A , B ) /\ K C_ A /\ X = ( H " K ) ) -> ( H |` K ) Isom R , S ( K , X ) ) |