This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007) (Revised by Mario Carneiro, 11-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reefiso | |- ( exp |` RR ) Isom < , < ( RR , RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reeff1o | |- ( exp |` RR ) : RR -1-1-onto-> RR+ |
|
| 2 | eflt | |- ( ( x e. RR /\ y e. RR ) -> ( x < y <-> ( exp ` x ) < ( exp ` y ) ) ) |
|
| 3 | fvres | |- ( x e. RR -> ( ( exp |` RR ) ` x ) = ( exp ` x ) ) |
|
| 4 | fvres | |- ( y e. RR -> ( ( exp |` RR ) ` y ) = ( exp ` y ) ) |
|
| 5 | 3 4 | breqan12d | |- ( ( x e. RR /\ y e. RR ) -> ( ( ( exp |` RR ) ` x ) < ( ( exp |` RR ) ` y ) <-> ( exp ` x ) < ( exp ` y ) ) ) |
| 6 | 2 5 | bitr4d | |- ( ( x e. RR /\ y e. RR ) -> ( x < y <-> ( ( exp |` RR ) ` x ) < ( ( exp |` RR ) ` y ) ) ) |
| 7 | 6 | rgen2 | |- A. x e. RR A. y e. RR ( x < y <-> ( ( exp |` RR ) ` x ) < ( ( exp |` RR ) ` y ) ) |
| 8 | df-isom | |- ( ( exp |` RR ) Isom < , < ( RR , RR+ ) <-> ( ( exp |` RR ) : RR -1-1-onto-> RR+ /\ A. x e. RR A. y e. RR ( x < y <-> ( ( exp |` RR ) ` x ) < ( ( exp |` RR ) ` y ) ) ) ) |
|
| 9 | 1 7 8 | mpbir2an | |- ( exp |` RR ) Isom < , < ( RR , RR+ ) |