This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real function with strictly increasing derivative is strictly convex. (Contributed by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcvx.a | |- ( ph -> A e. RR ) |
|
| dvcvx.b | |- ( ph -> B e. RR ) |
||
| dvcvx.l | |- ( ph -> A < B ) |
||
| dvcvx.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
||
| dvcvx.d | |- ( ph -> ( RR _D F ) Isom < , < ( ( A (,) B ) , W ) ) |
||
| dvcvx.t | |- ( ph -> T e. ( 0 (,) 1 ) ) |
||
| dvcvx.c | |- C = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) |
||
| Assertion | dvcvx | |- ( ph -> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcvx.a | |- ( ph -> A e. RR ) |
|
| 2 | dvcvx.b | |- ( ph -> B e. RR ) |
|
| 3 | dvcvx.l | |- ( ph -> A < B ) |
|
| 4 | dvcvx.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 5 | dvcvx.d | |- ( ph -> ( RR _D F ) Isom < , < ( ( A (,) B ) , W ) ) |
|
| 6 | dvcvx.t | |- ( ph -> T e. ( 0 (,) 1 ) ) |
|
| 7 | dvcvx.c | |- C = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) |
|
| 8 | elioore | |- ( T e. ( 0 (,) 1 ) -> T e. RR ) |
|
| 9 | 6 8 | syl | |- ( ph -> T e. RR ) |
| 10 | 9 1 | remulcld | |- ( ph -> ( T x. A ) e. RR ) |
| 11 | 1re | |- 1 e. RR |
|
| 12 | resubcl | |- ( ( 1 e. RR /\ T e. RR ) -> ( 1 - T ) e. RR ) |
|
| 13 | 11 9 12 | sylancr | |- ( ph -> ( 1 - T ) e. RR ) |
| 14 | 13 2 | remulcld | |- ( ph -> ( ( 1 - T ) x. B ) e. RR ) |
| 15 | 10 14 | readdcld | |- ( ph -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. RR ) |
| 16 | 7 15 | eqeltrid | |- ( ph -> C e. RR ) |
| 17 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 18 | 9 | recnd | |- ( ph -> T e. CC ) |
| 19 | 1 | recnd | |- ( ph -> A e. CC ) |
| 20 | 17 18 19 | subdird | |- ( ph -> ( ( 1 - T ) x. A ) = ( ( 1 x. A ) - ( T x. A ) ) ) |
| 21 | 19 | mullidd | |- ( ph -> ( 1 x. A ) = A ) |
| 22 | 21 | oveq1d | |- ( ph -> ( ( 1 x. A ) - ( T x. A ) ) = ( A - ( T x. A ) ) ) |
| 23 | 20 22 | eqtrd | |- ( ph -> ( ( 1 - T ) x. A ) = ( A - ( T x. A ) ) ) |
| 24 | eliooord | |- ( T e. ( 0 (,) 1 ) -> ( 0 < T /\ T < 1 ) ) |
|
| 25 | 6 24 | syl | |- ( ph -> ( 0 < T /\ T < 1 ) ) |
| 26 | 25 | simprd | |- ( ph -> T < 1 ) |
| 27 | posdif | |- ( ( T e. RR /\ 1 e. RR ) -> ( T < 1 <-> 0 < ( 1 - T ) ) ) |
|
| 28 | 9 11 27 | sylancl | |- ( ph -> ( T < 1 <-> 0 < ( 1 - T ) ) ) |
| 29 | 26 28 | mpbid | |- ( ph -> 0 < ( 1 - T ) ) |
| 30 | ltmul2 | |- ( ( A e. RR /\ B e. RR /\ ( ( 1 - T ) e. RR /\ 0 < ( 1 - T ) ) ) -> ( A < B <-> ( ( 1 - T ) x. A ) < ( ( 1 - T ) x. B ) ) ) |
|
| 31 | 1 2 13 29 30 | syl112anc | |- ( ph -> ( A < B <-> ( ( 1 - T ) x. A ) < ( ( 1 - T ) x. B ) ) ) |
| 32 | 3 31 | mpbid | |- ( ph -> ( ( 1 - T ) x. A ) < ( ( 1 - T ) x. B ) ) |
| 33 | 23 32 | eqbrtrrd | |- ( ph -> ( A - ( T x. A ) ) < ( ( 1 - T ) x. B ) ) |
| 34 | 1 10 14 | ltsubadd2d | |- ( ph -> ( ( A - ( T x. A ) ) < ( ( 1 - T ) x. B ) <-> A < ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
| 35 | 33 34 | mpbid | |- ( ph -> A < ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) |
| 36 | 35 7 | breqtrrdi | |- ( ph -> A < C ) |
| 37 | 1 | leidd | |- ( ph -> A <_ A ) |
| 38 | 2 | recnd | |- ( ph -> B e. CC ) |
| 39 | 17 18 38 | subdird | |- ( ph -> ( ( 1 - T ) x. B ) = ( ( 1 x. B ) - ( T x. B ) ) ) |
| 40 | 38 | mullidd | |- ( ph -> ( 1 x. B ) = B ) |
| 41 | 40 | oveq1d | |- ( ph -> ( ( 1 x. B ) - ( T x. B ) ) = ( B - ( T x. B ) ) ) |
| 42 | 39 41 | eqtrd | |- ( ph -> ( ( 1 - T ) x. B ) = ( B - ( T x. B ) ) ) |
| 43 | 9 2 | remulcld | |- ( ph -> ( T x. B ) e. RR ) |
| 44 | 25 | simpld | |- ( ph -> 0 < T ) |
| 45 | ltmul2 | |- ( ( A e. RR /\ B e. RR /\ ( T e. RR /\ 0 < T ) ) -> ( A < B <-> ( T x. A ) < ( T x. B ) ) ) |
|
| 46 | 1 2 9 44 45 | syl112anc | |- ( ph -> ( A < B <-> ( T x. A ) < ( T x. B ) ) ) |
| 47 | 3 46 | mpbid | |- ( ph -> ( T x. A ) < ( T x. B ) ) |
| 48 | 10 43 2 47 | ltsub2dd | |- ( ph -> ( B - ( T x. B ) ) < ( B - ( T x. A ) ) ) |
| 49 | 42 48 | eqbrtrd | |- ( ph -> ( ( 1 - T ) x. B ) < ( B - ( T x. A ) ) ) |
| 50 | 10 14 2 | ltaddsub2d | |- ( ph -> ( ( ( T x. A ) + ( ( 1 - T ) x. B ) ) < B <-> ( ( 1 - T ) x. B ) < ( B - ( T x. A ) ) ) ) |
| 51 | 49 50 | mpbird | |- ( ph -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) < B ) |
| 52 | 7 51 | eqbrtrid | |- ( ph -> C < B ) |
| 53 | 16 2 52 | ltled | |- ( ph -> C <_ B ) |
| 54 | iccss | |- ( ( ( A e. RR /\ B e. RR ) /\ ( A <_ A /\ C <_ B ) ) -> ( A [,] C ) C_ ( A [,] B ) ) |
|
| 55 | 1 2 37 53 54 | syl22anc | |- ( ph -> ( A [,] C ) C_ ( A [,] B ) ) |
| 56 | rescncf | |- ( ( A [,] C ) C_ ( A [,] B ) -> ( F e. ( ( A [,] B ) -cn-> RR ) -> ( F |` ( A [,] C ) ) e. ( ( A [,] C ) -cn-> RR ) ) ) |
|
| 57 | 55 4 56 | sylc | |- ( ph -> ( F |` ( A [,] C ) ) e. ( ( A [,] C ) -cn-> RR ) ) |
| 58 | ax-resscn | |- RR C_ CC |
|
| 59 | 58 | a1i | |- ( ph -> RR C_ CC ) |
| 60 | cncff | |- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
|
| 61 | 4 60 | syl | |- ( ph -> F : ( A [,] B ) --> RR ) |
| 62 | fss | |- ( ( F : ( A [,] B ) --> RR /\ RR C_ CC ) -> F : ( A [,] B ) --> CC ) |
|
| 63 | 61 58 62 | sylancl | |- ( ph -> F : ( A [,] B ) --> CC ) |
| 64 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 65 | 1 2 64 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 66 | iccssre | |- ( ( A e. RR /\ C e. RR ) -> ( A [,] C ) C_ RR ) |
|
| 67 | 1 16 66 | syl2anc | |- ( ph -> ( A [,] C ) C_ RR ) |
| 68 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 69 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 70 | 68 69 | dvres | |- ( ( ( RR C_ CC /\ F : ( A [,] B ) --> CC ) /\ ( ( A [,] B ) C_ RR /\ ( A [,] C ) C_ RR ) ) -> ( RR _D ( F |` ( A [,] C ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] C ) ) ) ) |
| 71 | 59 63 65 67 70 | syl22anc | |- ( ph -> ( RR _D ( F |` ( A [,] C ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] C ) ) ) ) |
| 72 | iccntr | |- ( ( A e. RR /\ C e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] C ) ) = ( A (,) C ) ) |
|
| 73 | 1 16 72 | syl2anc | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] C ) ) = ( A (,) C ) ) |
| 74 | 73 | reseq2d | |- ( ph -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] C ) ) ) = ( ( RR _D F ) |` ( A (,) C ) ) ) |
| 75 | 71 74 | eqtrd | |- ( ph -> ( RR _D ( F |` ( A [,] C ) ) ) = ( ( RR _D F ) |` ( A (,) C ) ) ) |
| 76 | 75 | dmeqd | |- ( ph -> dom ( RR _D ( F |` ( A [,] C ) ) ) = dom ( ( RR _D F ) |` ( A (,) C ) ) ) |
| 77 | dmres | |- dom ( ( RR _D F ) |` ( A (,) C ) ) = ( ( A (,) C ) i^i dom ( RR _D F ) ) |
|
| 78 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 79 | iooss2 | |- ( ( B e. RR* /\ C <_ B ) -> ( A (,) C ) C_ ( A (,) B ) ) |
|
| 80 | 78 53 79 | syl2anc | |- ( ph -> ( A (,) C ) C_ ( A (,) B ) ) |
| 81 | isof1o | |- ( ( RR _D F ) Isom < , < ( ( A (,) B ) , W ) -> ( RR _D F ) : ( A (,) B ) -1-1-onto-> W ) |
|
| 82 | f1odm | |- ( ( RR _D F ) : ( A (,) B ) -1-1-onto-> W -> dom ( RR _D F ) = ( A (,) B ) ) |
|
| 83 | 5 81 82 | 3syl | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
| 84 | 80 83 | sseqtrrd | |- ( ph -> ( A (,) C ) C_ dom ( RR _D F ) ) |
| 85 | dfss2 | |- ( ( A (,) C ) C_ dom ( RR _D F ) <-> ( ( A (,) C ) i^i dom ( RR _D F ) ) = ( A (,) C ) ) |
|
| 86 | 84 85 | sylib | |- ( ph -> ( ( A (,) C ) i^i dom ( RR _D F ) ) = ( A (,) C ) ) |
| 87 | 77 86 | eqtrid | |- ( ph -> dom ( ( RR _D F ) |` ( A (,) C ) ) = ( A (,) C ) ) |
| 88 | 76 87 | eqtrd | |- ( ph -> dom ( RR _D ( F |` ( A [,] C ) ) ) = ( A (,) C ) ) |
| 89 | 1 16 36 57 88 | mvth | |- ( ph -> E. x e. ( A (,) C ) ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) ) |
| 90 | 1 16 36 | ltled | |- ( ph -> A <_ C ) |
| 91 | 2 | leidd | |- ( ph -> B <_ B ) |
| 92 | iccss | |- ( ( ( A e. RR /\ B e. RR ) /\ ( A <_ C /\ B <_ B ) ) -> ( C [,] B ) C_ ( A [,] B ) ) |
|
| 93 | 1 2 90 91 92 | syl22anc | |- ( ph -> ( C [,] B ) C_ ( A [,] B ) ) |
| 94 | rescncf | |- ( ( C [,] B ) C_ ( A [,] B ) -> ( F e. ( ( A [,] B ) -cn-> RR ) -> ( F |` ( C [,] B ) ) e. ( ( C [,] B ) -cn-> RR ) ) ) |
|
| 95 | 93 4 94 | sylc | |- ( ph -> ( F |` ( C [,] B ) ) e. ( ( C [,] B ) -cn-> RR ) ) |
| 96 | iccssre | |- ( ( C e. RR /\ B e. RR ) -> ( C [,] B ) C_ RR ) |
|
| 97 | 16 2 96 | syl2anc | |- ( ph -> ( C [,] B ) C_ RR ) |
| 98 | 68 69 | dvres | |- ( ( ( RR C_ CC /\ F : ( A [,] B ) --> CC ) /\ ( ( A [,] B ) C_ RR /\ ( C [,] B ) C_ RR ) ) -> ( RR _D ( F |` ( C [,] B ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] B ) ) ) ) |
| 99 | 59 63 65 97 98 | syl22anc | |- ( ph -> ( RR _D ( F |` ( C [,] B ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] B ) ) ) ) |
| 100 | iccntr | |- ( ( C e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] B ) ) = ( C (,) B ) ) |
|
| 101 | 16 2 100 | syl2anc | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] B ) ) = ( C (,) B ) ) |
| 102 | 101 | reseq2d | |- ( ph -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( C [,] B ) ) ) = ( ( RR _D F ) |` ( C (,) B ) ) ) |
| 103 | 99 102 | eqtrd | |- ( ph -> ( RR _D ( F |` ( C [,] B ) ) ) = ( ( RR _D F ) |` ( C (,) B ) ) ) |
| 104 | 103 | dmeqd | |- ( ph -> dom ( RR _D ( F |` ( C [,] B ) ) ) = dom ( ( RR _D F ) |` ( C (,) B ) ) ) |
| 105 | dmres | |- dom ( ( RR _D F ) |` ( C (,) B ) ) = ( ( C (,) B ) i^i dom ( RR _D F ) ) |
|
| 106 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 107 | iooss1 | |- ( ( A e. RR* /\ A <_ C ) -> ( C (,) B ) C_ ( A (,) B ) ) |
|
| 108 | 106 90 107 | syl2anc | |- ( ph -> ( C (,) B ) C_ ( A (,) B ) ) |
| 109 | 108 83 | sseqtrrd | |- ( ph -> ( C (,) B ) C_ dom ( RR _D F ) ) |
| 110 | dfss2 | |- ( ( C (,) B ) C_ dom ( RR _D F ) <-> ( ( C (,) B ) i^i dom ( RR _D F ) ) = ( C (,) B ) ) |
|
| 111 | 109 110 | sylib | |- ( ph -> ( ( C (,) B ) i^i dom ( RR _D F ) ) = ( C (,) B ) ) |
| 112 | 105 111 | eqtrid | |- ( ph -> dom ( ( RR _D F ) |` ( C (,) B ) ) = ( C (,) B ) ) |
| 113 | 104 112 | eqtrd | |- ( ph -> dom ( RR _D ( F |` ( C [,] B ) ) ) = ( C (,) B ) ) |
| 114 | 16 2 52 95 113 | mvth | |- ( ph -> E. y e. ( C (,) B ) ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) ) |
| 115 | reeanv | |- ( E. x e. ( A (,) C ) E. y e. ( C (,) B ) ( ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) /\ ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) ) <-> ( E. x e. ( A (,) C ) ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) /\ E. y e. ( C (,) B ) ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) ) ) |
|
| 116 | 75 | fveq1d | |- ( ph -> ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( RR _D F ) |` ( A (,) C ) ) ` x ) ) |
| 117 | fvres | |- ( x e. ( A (,) C ) -> ( ( ( RR _D F ) |` ( A (,) C ) ) ` x ) = ( ( RR _D F ) ` x ) ) |
|
| 118 | 117 | adantr | |- ( ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) -> ( ( ( RR _D F ) |` ( A (,) C ) ) ` x ) = ( ( RR _D F ) ` x ) ) |
| 119 | 116 118 | sylan9eq | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( RR _D F ) ` x ) ) |
| 120 | 16 | rexrd | |- ( ph -> C e. RR* ) |
| 121 | ubicc2 | |- ( ( A e. RR* /\ C e. RR* /\ A <_ C ) -> C e. ( A [,] C ) ) |
|
| 122 | 106 120 90 121 | syl3anc | |- ( ph -> C e. ( A [,] C ) ) |
| 123 | 122 | fvresd | |- ( ph -> ( ( F |` ( A [,] C ) ) ` C ) = ( F ` C ) ) |
| 124 | lbicc2 | |- ( ( A e. RR* /\ C e. RR* /\ A <_ C ) -> A e. ( A [,] C ) ) |
|
| 125 | 106 120 90 124 | syl3anc | |- ( ph -> A e. ( A [,] C ) ) |
| 126 | 125 | fvresd | |- ( ph -> ( ( F |` ( A [,] C ) ) ` A ) = ( F ` A ) ) |
| 127 | 123 126 | oveq12d | |- ( ph -> ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) = ( ( F ` C ) - ( F ` A ) ) ) |
| 128 | 127 | oveq1d | |- ( ph -> ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) ) |
| 129 | 128 | adantr | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) ) |
| 130 | 119 129 | eqeq12d | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) <-> ( ( RR _D F ) ` x ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) ) ) |
| 131 | 103 | fveq1d | |- ( ph -> ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( RR _D F ) |` ( C (,) B ) ) ` y ) ) |
| 132 | fvres | |- ( y e. ( C (,) B ) -> ( ( ( RR _D F ) |` ( C (,) B ) ) ` y ) = ( ( RR _D F ) ` y ) ) |
|
| 133 | 132 | adantl | |- ( ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) -> ( ( ( RR _D F ) |` ( C (,) B ) ) ` y ) = ( ( RR _D F ) ` y ) ) |
| 134 | 131 133 | sylan9eq | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( RR _D F ) ` y ) ) |
| 135 | ubicc2 | |- ( ( C e. RR* /\ B e. RR* /\ C <_ B ) -> B e. ( C [,] B ) ) |
|
| 136 | 120 78 53 135 | syl3anc | |- ( ph -> B e. ( C [,] B ) ) |
| 137 | 136 | fvresd | |- ( ph -> ( ( F |` ( C [,] B ) ) ` B ) = ( F ` B ) ) |
| 138 | lbicc2 | |- ( ( C e. RR* /\ B e. RR* /\ C <_ B ) -> C e. ( C [,] B ) ) |
|
| 139 | 120 78 53 138 | syl3anc | |- ( ph -> C e. ( C [,] B ) ) |
| 140 | 139 | fvresd | |- ( ph -> ( ( F |` ( C [,] B ) ) ` C ) = ( F ` C ) ) |
| 141 | 137 140 | oveq12d | |- ( ph -> ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) = ( ( F ` B ) - ( F ` C ) ) ) |
| 142 | 141 | oveq1d | |- ( ph -> ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) = ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) |
| 143 | 142 | adantr | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) = ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) |
| 144 | 134 143 | eqeq12d | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) <-> ( ( RR _D F ) ` y ) = ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) ) |
| 145 | 130 144 | anbi12d | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) /\ ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) ) <-> ( ( ( RR _D F ) ` x ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) /\ ( ( RR _D F ) ` y ) = ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) ) ) |
| 146 | elioore | |- ( x e. ( A (,) C ) -> x e. RR ) |
|
| 147 | 146 | ad2antrl | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> x e. RR ) |
| 148 | 16 | adantr | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> C e. RR ) |
| 149 | elioore | |- ( y e. ( C (,) B ) -> y e. RR ) |
|
| 150 | 149 | ad2antll | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> y e. RR ) |
| 151 | eliooord | |- ( x e. ( A (,) C ) -> ( A < x /\ x < C ) ) |
|
| 152 | 151 | ad2antrl | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( A < x /\ x < C ) ) |
| 153 | 152 | simprd | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> x < C ) |
| 154 | eliooord | |- ( y e. ( C (,) B ) -> ( C < y /\ y < B ) ) |
|
| 155 | 154 | ad2antll | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( C < y /\ y < B ) ) |
| 156 | 155 | simpld | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> C < y ) |
| 157 | 147 148 150 153 156 | lttrd | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> x < y ) |
| 158 | 5 | adantr | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( RR _D F ) Isom < , < ( ( A (,) B ) , W ) ) |
| 159 | 80 | sselda | |- ( ( ph /\ x e. ( A (,) C ) ) -> x e. ( A (,) B ) ) |
| 160 | 159 | adantrr | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> x e. ( A (,) B ) ) |
| 161 | 108 | sselda | |- ( ( ph /\ y e. ( C (,) B ) ) -> y e. ( A (,) B ) ) |
| 162 | 161 | adantrl | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> y e. ( A (,) B ) ) |
| 163 | isorel | |- ( ( ( RR _D F ) Isom < , < ( ( A (,) B ) , W ) /\ ( x e. ( A (,) B ) /\ y e. ( A (,) B ) ) ) -> ( x < y <-> ( ( RR _D F ) ` x ) < ( ( RR _D F ) ` y ) ) ) |
|
| 164 | 158 160 162 163 | syl12anc | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( x < y <-> ( ( RR _D F ) ` x ) < ( ( RR _D F ) ` y ) ) ) |
| 165 | 157 164 | mpbid | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( RR _D F ) ` x ) < ( ( RR _D F ) ` y ) ) |
| 166 | breq12 | |- ( ( ( ( RR _D F ) ` x ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) /\ ( ( RR _D F ) ` y ) = ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) -> ( ( ( RR _D F ) ` x ) < ( ( RR _D F ) ` y ) <-> ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) < ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) ) |
|
| 167 | 165 166 | syl5ibcom | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( ( RR _D F ) ` x ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) /\ ( ( RR _D F ) ` y ) = ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) -> ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) < ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) ) |
| 168 | 55 122 | sseldd | |- ( ph -> C e. ( A [,] B ) ) |
| 169 | 61 168 | ffvelcdmd | |- ( ph -> ( F ` C ) e. RR ) |
| 170 | 55 125 | sseldd | |- ( ph -> A e. ( A [,] B ) ) |
| 171 | 61 170 | ffvelcdmd | |- ( ph -> ( F ` A ) e. RR ) |
| 172 | 169 171 | resubcld | |- ( ph -> ( ( F ` C ) - ( F ` A ) ) e. RR ) |
| 173 | 29 | gt0ne0d | |- ( ph -> ( 1 - T ) =/= 0 ) |
| 174 | 172 13 173 | redivcld | |- ( ph -> ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) e. RR ) |
| 175 | 93 136 | sseldd | |- ( ph -> B e. ( A [,] B ) ) |
| 176 | 61 175 | ffvelcdmd | |- ( ph -> ( F ` B ) e. RR ) |
| 177 | 176 169 | resubcld | |- ( ph -> ( ( F ` B ) - ( F ` C ) ) e. RR ) |
| 178 | 44 | gt0ne0d | |- ( ph -> T =/= 0 ) |
| 179 | 177 9 178 | redivcld | |- ( ph -> ( ( ( F ` B ) - ( F ` C ) ) / T ) e. RR ) |
| 180 | 2 1 | resubcld | |- ( ph -> ( B - A ) e. RR ) |
| 181 | 1 2 | posdifd | |- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
| 182 | 3 181 | mpbid | |- ( ph -> 0 < ( B - A ) ) |
| 183 | ltdiv1 | |- ( ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) e. RR /\ ( ( ( F ` B ) - ( F ` C ) ) / T ) e. RR /\ ( ( B - A ) e. RR /\ 0 < ( B - A ) ) ) -> ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) < ( ( ( F ` B ) - ( F ` C ) ) / T ) <-> ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) / ( B - A ) ) < ( ( ( ( F ` B ) - ( F ` C ) ) / T ) / ( B - A ) ) ) ) |
|
| 184 | 174 179 180 182 183 | syl112anc | |- ( ph -> ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) < ( ( ( F ` B ) - ( F ` C ) ) / T ) <-> ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) / ( B - A ) ) < ( ( ( ( F ` B ) - ( F ` C ) ) / T ) / ( B - A ) ) ) ) |
| 185 | 172 | recnd | |- ( ph -> ( ( F ` C ) - ( F ` A ) ) e. CC ) |
| 186 | 185 18 | mulcomd | |- ( ph -> ( ( ( F ` C ) - ( F ` A ) ) x. T ) = ( T x. ( ( F ` C ) - ( F ` A ) ) ) ) |
| 187 | 169 | recnd | |- ( ph -> ( F ` C ) e. CC ) |
| 188 | 171 | recnd | |- ( ph -> ( F ` A ) e. CC ) |
| 189 | 18 187 188 | subdid | |- ( ph -> ( T x. ( ( F ` C ) - ( F ` A ) ) ) = ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) ) |
| 190 | 186 189 | eqtrd | |- ( ph -> ( ( ( F ` C ) - ( F ` A ) ) x. T ) = ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) ) |
| 191 | 177 | recnd | |- ( ph -> ( ( F ` B ) - ( F ` C ) ) e. CC ) |
| 192 | 13 | recnd | |- ( ph -> ( 1 - T ) e. CC ) |
| 193 | 191 192 | mulcomd | |- ( ph -> ( ( ( F ` B ) - ( F ` C ) ) x. ( 1 - T ) ) = ( ( 1 - T ) x. ( ( F ` B ) - ( F ` C ) ) ) ) |
| 194 | 176 | recnd | |- ( ph -> ( F ` B ) e. CC ) |
| 195 | 192 194 187 | subdid | |- ( ph -> ( ( 1 - T ) x. ( ( F ` B ) - ( F ` C ) ) ) = ( ( ( 1 - T ) x. ( F ` B ) ) - ( ( 1 - T ) x. ( F ` C ) ) ) ) |
| 196 | 193 195 | eqtrd | |- ( ph -> ( ( ( F ` B ) - ( F ` C ) ) x. ( 1 - T ) ) = ( ( ( 1 - T ) x. ( F ` B ) ) - ( ( 1 - T ) x. ( F ` C ) ) ) ) |
| 197 | 190 196 | breq12d | |- ( ph -> ( ( ( ( F ` C ) - ( F ` A ) ) x. T ) < ( ( ( F ` B ) - ( F ` C ) ) x. ( 1 - T ) ) <-> ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) < ( ( ( 1 - T ) x. ( F ` B ) ) - ( ( 1 - T ) x. ( F ` C ) ) ) ) ) |
| 198 | 9 44 | jca | |- ( ph -> ( T e. RR /\ 0 < T ) ) |
| 199 | 13 29 | jca | |- ( ph -> ( ( 1 - T ) e. RR /\ 0 < ( 1 - T ) ) ) |
| 200 | lt2mul2div | |- ( ( ( ( ( F ` C ) - ( F ` A ) ) e. RR /\ ( T e. RR /\ 0 < T ) ) /\ ( ( ( F ` B ) - ( F ` C ) ) e. RR /\ ( ( 1 - T ) e. RR /\ 0 < ( 1 - T ) ) ) ) -> ( ( ( ( F ` C ) - ( F ` A ) ) x. T ) < ( ( ( F ` B ) - ( F ` C ) ) x. ( 1 - T ) ) <-> ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) < ( ( ( F ` B ) - ( F ` C ) ) / T ) ) ) |
|
| 201 | 172 198 177 199 200 | syl22anc | |- ( ph -> ( ( ( ( F ` C ) - ( F ` A ) ) x. T ) < ( ( ( F ` B ) - ( F ` C ) ) x. ( 1 - T ) ) <-> ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) < ( ( ( F ` B ) - ( F ` C ) ) / T ) ) ) |
| 202 | 9 169 | remulcld | |- ( ph -> ( T x. ( F ` C ) ) e. RR ) |
| 203 | 202 | recnd | |- ( ph -> ( T x. ( F ` C ) ) e. CC ) |
| 204 | 13 169 | remulcld | |- ( ph -> ( ( 1 - T ) x. ( F ` C ) ) e. RR ) |
| 205 | 204 | recnd | |- ( ph -> ( ( 1 - T ) x. ( F ` C ) ) e. CC ) |
| 206 | 9 171 | remulcld | |- ( ph -> ( T x. ( F ` A ) ) e. RR ) |
| 207 | 206 | recnd | |- ( ph -> ( T x. ( F ` A ) ) e. CC ) |
| 208 | 203 205 207 | addsubd | |- ( ph -> ( ( ( T x. ( F ` C ) ) + ( ( 1 - T ) x. ( F ` C ) ) ) - ( T x. ( F ` A ) ) ) = ( ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) + ( ( 1 - T ) x. ( F ` C ) ) ) ) |
| 209 | ax-1cn | |- 1 e. CC |
|
| 210 | pncan3 | |- ( ( T e. CC /\ 1 e. CC ) -> ( T + ( 1 - T ) ) = 1 ) |
|
| 211 | 18 209 210 | sylancl | |- ( ph -> ( T + ( 1 - T ) ) = 1 ) |
| 212 | 211 | oveq1d | |- ( ph -> ( ( T + ( 1 - T ) ) x. ( F ` C ) ) = ( 1 x. ( F ` C ) ) ) |
| 213 | 18 192 187 | adddird | |- ( ph -> ( ( T + ( 1 - T ) ) x. ( F ` C ) ) = ( ( T x. ( F ` C ) ) + ( ( 1 - T ) x. ( F ` C ) ) ) ) |
| 214 | 187 | mullidd | |- ( ph -> ( 1 x. ( F ` C ) ) = ( F ` C ) ) |
| 215 | 212 213 214 | 3eqtr3d | |- ( ph -> ( ( T x. ( F ` C ) ) + ( ( 1 - T ) x. ( F ` C ) ) ) = ( F ` C ) ) |
| 216 | 215 | oveq1d | |- ( ph -> ( ( ( T x. ( F ` C ) ) + ( ( 1 - T ) x. ( F ` C ) ) ) - ( T x. ( F ` A ) ) ) = ( ( F ` C ) - ( T x. ( F ` A ) ) ) ) |
| 217 | 208 216 | eqtr3d | |- ( ph -> ( ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) + ( ( 1 - T ) x. ( F ` C ) ) ) = ( ( F ` C ) - ( T x. ( F ` A ) ) ) ) |
| 218 | 217 | breq1d | |- ( ph -> ( ( ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) + ( ( 1 - T ) x. ( F ` C ) ) ) < ( ( 1 - T ) x. ( F ` B ) ) <-> ( ( F ` C ) - ( T x. ( F ` A ) ) ) < ( ( 1 - T ) x. ( F ` B ) ) ) ) |
| 219 | 202 206 | resubcld | |- ( ph -> ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) e. RR ) |
| 220 | 13 176 | remulcld | |- ( ph -> ( ( 1 - T ) x. ( F ` B ) ) e. RR ) |
| 221 | 219 204 220 | ltaddsubd | |- ( ph -> ( ( ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) + ( ( 1 - T ) x. ( F ` C ) ) ) < ( ( 1 - T ) x. ( F ` B ) ) <-> ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) < ( ( ( 1 - T ) x. ( F ` B ) ) - ( ( 1 - T ) x. ( F ` C ) ) ) ) ) |
| 222 | 169 206 220 | ltsubadd2d | |- ( ph -> ( ( ( F ` C ) - ( T x. ( F ` A ) ) ) < ( ( 1 - T ) x. ( F ` B ) ) <-> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 223 | 218 221 222 | 3bitr3d | |- ( ph -> ( ( ( T x. ( F ` C ) ) - ( T x. ( F ` A ) ) ) < ( ( ( 1 - T ) x. ( F ` B ) ) - ( ( 1 - T ) x. ( F ` C ) ) ) <-> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 224 | 197 201 223 | 3bitr3d | |- ( ph -> ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) < ( ( ( F ` B ) - ( F ` C ) ) / T ) <-> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 225 | 180 | recnd | |- ( ph -> ( B - A ) e. CC ) |
| 226 | 182 | gt0ne0d | |- ( ph -> ( B - A ) =/= 0 ) |
| 227 | 185 192 225 173 226 | divdiv1d | |- ( ph -> ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) / ( B - A ) ) = ( ( ( F ` C ) - ( F ` A ) ) / ( ( 1 - T ) x. ( B - A ) ) ) ) |
| 228 | 23 | oveq2d | |- ( ph -> ( ( ( 1 - T ) x. B ) - ( ( 1 - T ) x. A ) ) = ( ( ( 1 - T ) x. B ) - ( A - ( T x. A ) ) ) ) |
| 229 | 14 | recnd | |- ( ph -> ( ( 1 - T ) x. B ) e. CC ) |
| 230 | 10 | recnd | |- ( ph -> ( T x. A ) e. CC ) |
| 231 | 229 19 230 | subsub3d | |- ( ph -> ( ( ( 1 - T ) x. B ) - ( A - ( T x. A ) ) ) = ( ( ( ( 1 - T ) x. B ) + ( T x. A ) ) - A ) ) |
| 232 | 228 231 | eqtrd | |- ( ph -> ( ( ( 1 - T ) x. B ) - ( ( 1 - T ) x. A ) ) = ( ( ( ( 1 - T ) x. B ) + ( T x. A ) ) - A ) ) |
| 233 | 192 38 19 | subdid | |- ( ph -> ( ( 1 - T ) x. ( B - A ) ) = ( ( ( 1 - T ) x. B ) - ( ( 1 - T ) x. A ) ) ) |
| 234 | 230 229 | addcomd | |- ( ph -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) = ( ( ( 1 - T ) x. B ) + ( T x. A ) ) ) |
| 235 | 7 234 | eqtrid | |- ( ph -> C = ( ( ( 1 - T ) x. B ) + ( T x. A ) ) ) |
| 236 | 235 | oveq1d | |- ( ph -> ( C - A ) = ( ( ( ( 1 - T ) x. B ) + ( T x. A ) ) - A ) ) |
| 237 | 232 233 236 | 3eqtr4d | |- ( ph -> ( ( 1 - T ) x. ( B - A ) ) = ( C - A ) ) |
| 238 | 237 | oveq2d | |- ( ph -> ( ( ( F ` C ) - ( F ` A ) ) / ( ( 1 - T ) x. ( B - A ) ) ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) ) |
| 239 | 227 238 | eqtrd | |- ( ph -> ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) / ( B - A ) ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) ) |
| 240 | 191 18 225 178 226 | divdiv1d | |- ( ph -> ( ( ( ( F ` B ) - ( F ` C ) ) / T ) / ( B - A ) ) = ( ( ( F ` B ) - ( F ` C ) ) / ( T x. ( B - A ) ) ) ) |
| 241 | 38 229 230 | subsub4d | |- ( ph -> ( ( B - ( ( 1 - T ) x. B ) ) - ( T x. A ) ) = ( B - ( ( ( 1 - T ) x. B ) + ( T x. A ) ) ) ) |
| 242 | 42 | oveq2d | |- ( ph -> ( B - ( ( 1 - T ) x. B ) ) = ( B - ( B - ( T x. B ) ) ) ) |
| 243 | 43 | recnd | |- ( ph -> ( T x. B ) e. CC ) |
| 244 | 38 243 | nncand | |- ( ph -> ( B - ( B - ( T x. B ) ) ) = ( T x. B ) ) |
| 245 | 242 244 | eqtrd | |- ( ph -> ( B - ( ( 1 - T ) x. B ) ) = ( T x. B ) ) |
| 246 | 245 | oveq1d | |- ( ph -> ( ( B - ( ( 1 - T ) x. B ) ) - ( T x. A ) ) = ( ( T x. B ) - ( T x. A ) ) ) |
| 247 | 241 246 | eqtr3d | |- ( ph -> ( B - ( ( ( 1 - T ) x. B ) + ( T x. A ) ) ) = ( ( T x. B ) - ( T x. A ) ) ) |
| 248 | 235 | oveq2d | |- ( ph -> ( B - C ) = ( B - ( ( ( 1 - T ) x. B ) + ( T x. A ) ) ) ) |
| 249 | 18 38 19 | subdid | |- ( ph -> ( T x. ( B - A ) ) = ( ( T x. B ) - ( T x. A ) ) ) |
| 250 | 247 248 249 | 3eqtr4d | |- ( ph -> ( B - C ) = ( T x. ( B - A ) ) ) |
| 251 | 250 | oveq2d | |- ( ph -> ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) = ( ( ( F ` B ) - ( F ` C ) ) / ( T x. ( B - A ) ) ) ) |
| 252 | 240 251 | eqtr4d | |- ( ph -> ( ( ( ( F ` B ) - ( F ` C ) ) / T ) / ( B - A ) ) = ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) |
| 253 | 239 252 | breq12d | |- ( ph -> ( ( ( ( ( F ` C ) - ( F ` A ) ) / ( 1 - T ) ) / ( B - A ) ) < ( ( ( ( F ` B ) - ( F ` C ) ) / T ) / ( B - A ) ) <-> ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) < ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) ) |
| 254 | 184 224 253 | 3bitr3rd | |- ( ph -> ( ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) < ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) <-> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 255 | 254 | adantr | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) < ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) <-> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 256 | 167 255 | sylibd | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( ( RR _D F ) ` x ) = ( ( ( F ` C ) - ( F ` A ) ) / ( C - A ) ) /\ ( ( RR _D F ) ` y ) = ( ( ( F ` B ) - ( F ` C ) ) / ( B - C ) ) ) -> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 257 | 145 256 | sylbid | |- ( ( ph /\ ( x e. ( A (,) C ) /\ y e. ( C (,) B ) ) ) -> ( ( ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) /\ ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) ) -> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 258 | 257 | rexlimdvva | |- ( ph -> ( E. x e. ( A (,) C ) E. y e. ( C (,) B ) ( ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) /\ ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) ) -> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 259 | 115 258 | biimtrrid | |- ( ph -> ( ( E. x e. ( A (,) C ) ( ( RR _D ( F |` ( A [,] C ) ) ) ` x ) = ( ( ( ( F |` ( A [,] C ) ) ` C ) - ( ( F |` ( A [,] C ) ) ` A ) ) / ( C - A ) ) /\ E. y e. ( C (,) B ) ( ( RR _D ( F |` ( C [,] B ) ) ) ` y ) = ( ( ( ( F |` ( C [,] B ) ) ` B ) - ( ( F |` ( C [,] B ) ) ` C ) ) / ( B - C ) ) ) -> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) ) |
| 260 | 89 114 259 | mp2and | |- ( ph -> ( F ` C ) < ( ( T x. ( F ` A ) ) + ( ( 1 - T ) x. ( F ` B ) ) ) ) |