This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lincmb01cmp | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. A ) + ( T x. B ) ) e. ( A [,] B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> T e. ( 0 [,] 1 ) ) |
|
| 2 | 0red | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> 0 e. RR ) |
|
| 3 | 1red | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> 1 e. RR ) |
|
| 4 | elicc01 | |- ( T e. ( 0 [,] 1 ) <-> ( T e. RR /\ 0 <_ T /\ T <_ 1 ) ) |
|
| 5 | 4 | simp1bi | |- ( T e. ( 0 [,] 1 ) -> T e. RR ) |
| 6 | 5 | adantl | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> T e. RR ) |
| 7 | difrp | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( B - A ) e. RR+ ) ) |
|
| 8 | 7 | biimp3a | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( B - A ) e. RR+ ) |
| 9 | 8 | adantr | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( B - A ) e. RR+ ) |
| 10 | eqid | |- ( 0 x. ( B - A ) ) = ( 0 x. ( B - A ) ) |
|
| 11 | eqid | |- ( 1 x. ( B - A ) ) = ( 1 x. ( B - A ) ) |
|
| 12 | 10 11 | iccdil | |- ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( T e. RR /\ ( B - A ) e. RR+ ) ) -> ( T e. ( 0 [,] 1 ) <-> ( T x. ( B - A ) ) e. ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) ) ) |
| 13 | 2 3 6 9 12 | syl22anc | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( T e. ( 0 [,] 1 ) <-> ( T x. ( B - A ) ) e. ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) ) ) |
| 14 | 1 13 | mpbid | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( T x. ( B - A ) ) e. ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) ) |
| 15 | simpl2 | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> B e. RR ) |
|
| 16 | simpl1 | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> A e. RR ) |
|
| 17 | 15 16 | resubcld | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( B - A ) e. RR ) |
| 18 | 17 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( B - A ) e. CC ) |
| 19 | 18 | mul02d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( 0 x. ( B - A ) ) = 0 ) |
| 20 | 18 | mullidd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( 1 x. ( B - A ) ) = ( B - A ) ) |
| 21 | 19 20 | oveq12d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) = ( 0 [,] ( B - A ) ) ) |
| 22 | 14 21 | eleqtrd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( T x. ( B - A ) ) e. ( 0 [,] ( B - A ) ) ) |
| 23 | 6 17 | remulcld | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( T x. ( B - A ) ) e. RR ) |
| 24 | eqid | |- ( 0 + A ) = ( 0 + A ) |
|
| 25 | eqid | |- ( ( B - A ) + A ) = ( ( B - A ) + A ) |
|
| 26 | 24 25 | iccshftr | |- ( ( ( 0 e. RR /\ ( B - A ) e. RR ) /\ ( ( T x. ( B - A ) ) e. RR /\ A e. RR ) ) -> ( ( T x. ( B - A ) ) e. ( 0 [,] ( B - A ) ) <-> ( ( T x. ( B - A ) ) + A ) e. ( ( 0 + A ) [,] ( ( B - A ) + A ) ) ) ) |
| 27 | 2 17 23 16 26 | syl22anc | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( T x. ( B - A ) ) e. ( 0 [,] ( B - A ) ) <-> ( ( T x. ( B - A ) ) + A ) e. ( ( 0 + A ) [,] ( ( B - A ) + A ) ) ) ) |
| 28 | 22 27 | mpbid | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( T x. ( B - A ) ) + A ) e. ( ( 0 + A ) [,] ( ( B - A ) + A ) ) ) |
| 29 | 6 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> T e. CC ) |
| 30 | 15 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> B e. CC ) |
| 31 | 29 30 | mulcld | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( T x. B ) e. CC ) |
| 32 | 16 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> A e. CC ) |
| 33 | 29 32 | mulcld | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( T x. A ) e. CC ) |
| 34 | 31 33 32 | subadd23d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( T x. B ) - ( T x. A ) ) + A ) = ( ( T x. B ) + ( A - ( T x. A ) ) ) ) |
| 35 | 29 30 32 | subdid | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( T x. ( B - A ) ) = ( ( T x. B ) - ( T x. A ) ) ) |
| 36 | 35 | oveq1d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( T x. ( B - A ) ) + A ) = ( ( ( T x. B ) - ( T x. A ) ) + A ) ) |
| 37 | 1re | |- 1 e. RR |
|
| 38 | resubcl | |- ( ( 1 e. RR /\ T e. RR ) -> ( 1 - T ) e. RR ) |
|
| 39 | 37 6 38 | sylancr | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( 1 - T ) e. RR ) |
| 40 | 39 16 | remulcld | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( 1 - T ) x. A ) e. RR ) |
| 41 | 40 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( 1 - T ) x. A ) e. CC ) |
| 42 | 41 31 | addcomd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. A ) + ( T x. B ) ) = ( ( T x. B ) + ( ( 1 - T ) x. A ) ) ) |
| 43 | 1cnd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> 1 e. CC ) |
|
| 44 | 43 29 32 | subdird | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( 1 - T ) x. A ) = ( ( 1 x. A ) - ( T x. A ) ) ) |
| 45 | 32 | mullidd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( 1 x. A ) = A ) |
| 46 | 45 | oveq1d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( 1 x. A ) - ( T x. A ) ) = ( A - ( T x. A ) ) ) |
| 47 | 44 46 | eqtrd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( 1 - T ) x. A ) = ( A - ( T x. A ) ) ) |
| 48 | 47 | oveq2d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( T x. B ) + ( ( 1 - T ) x. A ) ) = ( ( T x. B ) + ( A - ( T x. A ) ) ) ) |
| 49 | 42 48 | eqtrd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. A ) + ( T x. B ) ) = ( ( T x. B ) + ( A - ( T x. A ) ) ) ) |
| 50 | 34 36 49 | 3eqtr4d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( T x. ( B - A ) ) + A ) = ( ( ( 1 - T ) x. A ) + ( T x. B ) ) ) |
| 51 | 32 | addlidd | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( 0 + A ) = A ) |
| 52 | 30 32 | npcand | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( B - A ) + A ) = B ) |
| 53 | 51 52 | oveq12d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( 0 + A ) [,] ( ( B - A ) + A ) ) = ( A [,] B ) ) |
| 54 | 28 50 53 | 3eltr3d | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. A ) + ( T x. B ) ) e. ( A [,] B ) ) |