This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for catciso . (Contributed by Mario Carneiro, 29-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catciso.c | |- C = ( CatCat ` U ) |
|
| catciso.b | |- B = ( Base ` C ) |
||
| catciso.r | |- R = ( Base ` X ) |
||
| catciso.s | |- S = ( Base ` Y ) |
||
| catciso.u | |- ( ph -> U e. V ) |
||
| catciso.x | |- ( ph -> X e. B ) |
||
| catciso.y | |- ( ph -> Y e. B ) |
||
| catcisolem.i | |- I = ( Inv ` C ) |
||
| catcisolem.g | |- H = ( x e. S , y e. S |-> `' ( ( `' F ` x ) G ( `' F ` y ) ) ) |
||
| catcisolem.1 | |- ( ph -> F ( ( X Full Y ) i^i ( X Faith Y ) ) G ) |
||
| catcisolem.2 | |- ( ph -> F : R -1-1-onto-> S ) |
||
| Assertion | catcisolem | |- ( ph -> <. F , G >. ( X I Y ) <. `' F , H >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catciso.c | |- C = ( CatCat ` U ) |
|
| 2 | catciso.b | |- B = ( Base ` C ) |
|
| 3 | catciso.r | |- R = ( Base ` X ) |
|
| 4 | catciso.s | |- S = ( Base ` Y ) |
|
| 5 | catciso.u | |- ( ph -> U e. V ) |
|
| 6 | catciso.x | |- ( ph -> X e. B ) |
|
| 7 | catciso.y | |- ( ph -> Y e. B ) |
|
| 8 | catcisolem.i | |- I = ( Inv ` C ) |
|
| 9 | catcisolem.g | |- H = ( x e. S , y e. S |-> `' ( ( `' F ` x ) G ( `' F ` y ) ) ) |
|
| 10 | catcisolem.1 | |- ( ph -> F ( ( X Full Y ) i^i ( X Faith Y ) ) G ) |
|
| 11 | catcisolem.2 | |- ( ph -> F : R -1-1-onto-> S ) |
|
| 12 | f1ococnv1 | |- ( F : R -1-1-onto-> S -> ( `' F o. F ) = ( _I |` R ) ) |
|
| 13 | 11 12 | syl | |- ( ph -> ( `' F o. F ) = ( _I |` R ) ) |
| 14 | 11 | 3ad2ant1 | |- ( ( ph /\ u e. R /\ v e. R ) -> F : R -1-1-onto-> S ) |
| 15 | f1of | |- ( F : R -1-1-onto-> S -> F : R --> S ) |
|
| 16 | 14 15 | syl | |- ( ( ph /\ u e. R /\ v e. R ) -> F : R --> S ) |
| 17 | simp2 | |- ( ( ph /\ u e. R /\ v e. R ) -> u e. R ) |
|
| 18 | 16 17 | ffvelcdmd | |- ( ( ph /\ u e. R /\ v e. R ) -> ( F ` u ) e. S ) |
| 19 | simp3 | |- ( ( ph /\ u e. R /\ v e. R ) -> v e. R ) |
|
| 20 | 16 19 | ffvelcdmd | |- ( ( ph /\ u e. R /\ v e. R ) -> ( F ` v ) e. S ) |
| 21 | simpl | |- ( ( x = ( F ` u ) /\ y = ( F ` v ) ) -> x = ( F ` u ) ) |
|
| 22 | 21 | fveq2d | |- ( ( x = ( F ` u ) /\ y = ( F ` v ) ) -> ( `' F ` x ) = ( `' F ` ( F ` u ) ) ) |
| 23 | simpr | |- ( ( x = ( F ` u ) /\ y = ( F ` v ) ) -> y = ( F ` v ) ) |
|
| 24 | 23 | fveq2d | |- ( ( x = ( F ` u ) /\ y = ( F ` v ) ) -> ( `' F ` y ) = ( `' F ` ( F ` v ) ) ) |
| 25 | 22 24 | oveq12d | |- ( ( x = ( F ` u ) /\ y = ( F ` v ) ) -> ( ( `' F ` x ) G ( `' F ` y ) ) = ( ( `' F ` ( F ` u ) ) G ( `' F ` ( F ` v ) ) ) ) |
| 26 | 25 | cnveqd | |- ( ( x = ( F ` u ) /\ y = ( F ` v ) ) -> `' ( ( `' F ` x ) G ( `' F ` y ) ) = `' ( ( `' F ` ( F ` u ) ) G ( `' F ` ( F ` v ) ) ) ) |
| 27 | ovex | |- ( ( `' F ` ( F ` u ) ) G ( `' F ` ( F ` v ) ) ) e. _V |
|
| 28 | 27 | cnvex | |- `' ( ( `' F ` ( F ` u ) ) G ( `' F ` ( F ` v ) ) ) e. _V |
| 29 | 26 9 28 | ovmpoa | |- ( ( ( F ` u ) e. S /\ ( F ` v ) e. S ) -> ( ( F ` u ) H ( F ` v ) ) = `' ( ( `' F ` ( F ` u ) ) G ( `' F ` ( F ` v ) ) ) ) |
| 30 | 18 20 29 | syl2anc | |- ( ( ph /\ u e. R /\ v e. R ) -> ( ( F ` u ) H ( F ` v ) ) = `' ( ( `' F ` ( F ` u ) ) G ( `' F ` ( F ` v ) ) ) ) |
| 31 | f1ocnvfv1 | |- ( ( F : R -1-1-onto-> S /\ u e. R ) -> ( `' F ` ( F ` u ) ) = u ) |
|
| 32 | 14 17 31 | syl2anc | |- ( ( ph /\ u e. R /\ v e. R ) -> ( `' F ` ( F ` u ) ) = u ) |
| 33 | f1ocnvfv1 | |- ( ( F : R -1-1-onto-> S /\ v e. R ) -> ( `' F ` ( F ` v ) ) = v ) |
|
| 34 | 14 19 33 | syl2anc | |- ( ( ph /\ u e. R /\ v e. R ) -> ( `' F ` ( F ` v ) ) = v ) |
| 35 | 32 34 | oveq12d | |- ( ( ph /\ u e. R /\ v e. R ) -> ( ( `' F ` ( F ` u ) ) G ( `' F ` ( F ` v ) ) ) = ( u G v ) ) |
| 36 | 35 | cnveqd | |- ( ( ph /\ u e. R /\ v e. R ) -> `' ( ( `' F ` ( F ` u ) ) G ( `' F ` ( F ` v ) ) ) = `' ( u G v ) ) |
| 37 | 30 36 | eqtrd | |- ( ( ph /\ u e. R /\ v e. R ) -> ( ( F ` u ) H ( F ` v ) ) = `' ( u G v ) ) |
| 38 | 37 | coeq1d | |- ( ( ph /\ u e. R /\ v e. R ) -> ( ( ( F ` u ) H ( F ` v ) ) o. ( u G v ) ) = ( `' ( u G v ) o. ( u G v ) ) ) |
| 39 | eqid | |- ( Hom ` X ) = ( Hom ` X ) |
|
| 40 | eqid | |- ( Hom ` Y ) = ( Hom ` Y ) |
|
| 41 | 10 | 3ad2ant1 | |- ( ( ph /\ u e. R /\ v e. R ) -> F ( ( X Full Y ) i^i ( X Faith Y ) ) G ) |
| 42 | 3 39 40 41 17 19 | ffthf1o | |- ( ( ph /\ u e. R /\ v e. R ) -> ( u G v ) : ( u ( Hom ` X ) v ) -1-1-onto-> ( ( F ` u ) ( Hom ` Y ) ( F ` v ) ) ) |
| 43 | f1ococnv1 | |- ( ( u G v ) : ( u ( Hom ` X ) v ) -1-1-onto-> ( ( F ` u ) ( Hom ` Y ) ( F ` v ) ) -> ( `' ( u G v ) o. ( u G v ) ) = ( _I |` ( u ( Hom ` X ) v ) ) ) |
|
| 44 | 42 43 | syl | |- ( ( ph /\ u e. R /\ v e. R ) -> ( `' ( u G v ) o. ( u G v ) ) = ( _I |` ( u ( Hom ` X ) v ) ) ) |
| 45 | 38 44 | eqtrd | |- ( ( ph /\ u e. R /\ v e. R ) -> ( ( ( F ` u ) H ( F ` v ) ) o. ( u G v ) ) = ( _I |` ( u ( Hom ` X ) v ) ) ) |
| 46 | 45 | mpoeq3dva | |- ( ph -> ( u e. R , v e. R |-> ( ( ( F ` u ) H ( F ` v ) ) o. ( u G v ) ) ) = ( u e. R , v e. R |-> ( _I |` ( u ( Hom ` X ) v ) ) ) ) |
| 47 | fveq2 | |- ( z = <. u , v >. -> ( ( Hom ` X ) ` z ) = ( ( Hom ` X ) ` <. u , v >. ) ) |
|
| 48 | df-ov | |- ( u ( Hom ` X ) v ) = ( ( Hom ` X ) ` <. u , v >. ) |
|
| 49 | 47 48 | eqtr4di | |- ( z = <. u , v >. -> ( ( Hom ` X ) ` z ) = ( u ( Hom ` X ) v ) ) |
| 50 | 49 | reseq2d | |- ( z = <. u , v >. -> ( _I |` ( ( Hom ` X ) ` z ) ) = ( _I |` ( u ( Hom ` X ) v ) ) ) |
| 51 | 50 | mpompt | |- ( z e. ( R X. R ) |-> ( _I |` ( ( Hom ` X ) ` z ) ) ) = ( u e. R , v e. R |-> ( _I |` ( u ( Hom ` X ) v ) ) ) |
| 52 | 46 51 | eqtr4di | |- ( ph -> ( u e. R , v e. R |-> ( ( ( F ` u ) H ( F ` v ) ) o. ( u G v ) ) ) = ( z e. ( R X. R ) |-> ( _I |` ( ( Hom ` X ) ` z ) ) ) ) |
| 53 | 13 52 | opeq12d | |- ( ph -> <. ( `' F o. F ) , ( u e. R , v e. R |-> ( ( ( F ` u ) H ( F ` v ) ) o. ( u G v ) ) ) >. = <. ( _I |` R ) , ( z e. ( R X. R ) |-> ( _I |` ( ( Hom ` X ) ` z ) ) ) >. ) |
| 54 | inss1 | |- ( ( X Full Y ) i^i ( X Faith Y ) ) C_ ( X Full Y ) |
|
| 55 | fullfunc | |- ( X Full Y ) C_ ( X Func Y ) |
|
| 56 | 54 55 | sstri | |- ( ( X Full Y ) i^i ( X Faith Y ) ) C_ ( X Func Y ) |
| 57 | 56 | ssbri | |- ( F ( ( X Full Y ) i^i ( X Faith Y ) ) G -> F ( X Func Y ) G ) |
| 58 | 10 57 | syl | |- ( ph -> F ( X Func Y ) G ) |
| 59 | eqid | |- ( Id ` Y ) = ( Id ` Y ) |
|
| 60 | eqid | |- ( Id ` X ) = ( Id ` X ) |
|
| 61 | eqid | |- ( comp ` Y ) = ( comp ` Y ) |
|
| 62 | eqid | |- ( comp ` X ) = ( comp ` X ) |
|
| 63 | 1 2 5 | catcbas | |- ( ph -> B = ( U i^i Cat ) ) |
| 64 | inss2 | |- ( U i^i Cat ) C_ Cat |
|
| 65 | 63 64 | eqsstrdi | |- ( ph -> B C_ Cat ) |
| 66 | 65 7 | sseldd | |- ( ph -> Y e. Cat ) |
| 67 | 65 6 | sseldd | |- ( ph -> X e. Cat ) |
| 68 | f1ocnv | |- ( F : R -1-1-onto-> S -> `' F : S -1-1-onto-> R ) |
|
| 69 | f1of | |- ( `' F : S -1-1-onto-> R -> `' F : S --> R ) |
|
| 70 | 11 68 69 | 3syl | |- ( ph -> `' F : S --> R ) |
| 71 | ovex | |- ( ( `' F ` x ) G ( `' F ` y ) ) e. _V |
|
| 72 | 71 | cnvex | |- `' ( ( `' F ` x ) G ( `' F ` y ) ) e. _V |
| 73 | 9 72 | fnmpoi | |- H Fn ( S X. S ) |
| 74 | 73 | a1i | |- ( ph -> H Fn ( S X. S ) ) |
| 75 | 10 | adantr | |- ( ( ph /\ ( u e. S /\ v e. S ) ) -> F ( ( X Full Y ) i^i ( X Faith Y ) ) G ) |
| 76 | 70 | ffvelcdmda | |- ( ( ph /\ u e. S ) -> ( `' F ` u ) e. R ) |
| 77 | 76 | adantrr | |- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( `' F ` u ) e. R ) |
| 78 | 70 | ffvelcdmda | |- ( ( ph /\ v e. S ) -> ( `' F ` v ) e. R ) |
| 79 | 78 | adantrl | |- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( `' F ` v ) e. R ) |
| 80 | 3 39 40 75 77 79 | ffthf1o | |- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) ) |
| 81 | f1ocnv | |- ( ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) -> `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) -1-1-onto-> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) |
|
| 82 | f1of | |- ( `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) -1-1-onto-> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -> `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) --> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) |
|
| 83 | 80 81 82 | 3syl | |- ( ( ph /\ ( u e. S /\ v e. S ) ) -> `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) --> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) |
| 84 | simpl | |- ( ( x = u /\ y = v ) -> x = u ) |
|
| 85 | 84 | fveq2d | |- ( ( x = u /\ y = v ) -> ( `' F ` x ) = ( `' F ` u ) ) |
| 86 | simpr | |- ( ( x = u /\ y = v ) -> y = v ) |
|
| 87 | 86 | fveq2d | |- ( ( x = u /\ y = v ) -> ( `' F ` y ) = ( `' F ` v ) ) |
| 88 | 85 87 | oveq12d | |- ( ( x = u /\ y = v ) -> ( ( `' F ` x ) G ( `' F ` y ) ) = ( ( `' F ` u ) G ( `' F ` v ) ) ) |
| 89 | 88 | cnveqd | |- ( ( x = u /\ y = v ) -> `' ( ( `' F ` x ) G ( `' F ` y ) ) = `' ( ( `' F ` u ) G ( `' F ` v ) ) ) |
| 90 | ovex | |- ( ( `' F ` u ) G ( `' F ` v ) ) e. _V |
|
| 91 | 90 | cnvex | |- `' ( ( `' F ` u ) G ( `' F ` v ) ) e. _V |
| 92 | 89 9 91 | ovmpoa | |- ( ( u e. S /\ v e. S ) -> ( u H v ) = `' ( ( `' F ` u ) G ( `' F ` v ) ) ) |
| 93 | 92 | adantl | |- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( u H v ) = `' ( ( `' F ` u ) G ( `' F ` v ) ) ) |
| 94 | 11 | adantr | |- ( ( ph /\ ( u e. S /\ v e. S ) ) -> F : R -1-1-onto-> S ) |
| 95 | simprl | |- ( ( ph /\ ( u e. S /\ v e. S ) ) -> u e. S ) |
|
| 96 | f1ocnvfv2 | |- ( ( F : R -1-1-onto-> S /\ u e. S ) -> ( F ` ( `' F ` u ) ) = u ) |
|
| 97 | 94 95 96 | syl2anc | |- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( F ` ( `' F ` u ) ) = u ) |
| 98 | simprr | |- ( ( ph /\ ( u e. S /\ v e. S ) ) -> v e. S ) |
|
| 99 | f1ocnvfv2 | |- ( ( F : R -1-1-onto-> S /\ v e. S ) -> ( F ` ( `' F ` v ) ) = v ) |
|
| 100 | 94 98 99 | syl2anc | |- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( F ` ( `' F ` v ) ) = v ) |
| 101 | 97 100 | oveq12d | |- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) = ( u ( Hom ` Y ) v ) ) |
| 102 | 101 | eqcomd | |- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( u ( Hom ` Y ) v ) = ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) ) |
| 103 | 93 102 | feq12d | |- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( ( u H v ) : ( u ( Hom ` Y ) v ) --> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) <-> `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) --> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) ) |
| 104 | 83 103 | mpbird | |- ( ( ph /\ ( u e. S /\ v e. S ) ) -> ( u H v ) : ( u ( Hom ` Y ) v ) --> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) |
| 105 | simpr | |- ( ( ph /\ u e. S ) -> u e. S ) |
|
| 106 | simpl | |- ( ( x = u /\ y = u ) -> x = u ) |
|
| 107 | 106 | fveq2d | |- ( ( x = u /\ y = u ) -> ( `' F ` x ) = ( `' F ` u ) ) |
| 108 | simpr | |- ( ( x = u /\ y = u ) -> y = u ) |
|
| 109 | 108 | fveq2d | |- ( ( x = u /\ y = u ) -> ( `' F ` y ) = ( `' F ` u ) ) |
| 110 | 107 109 | oveq12d | |- ( ( x = u /\ y = u ) -> ( ( `' F ` x ) G ( `' F ` y ) ) = ( ( `' F ` u ) G ( `' F ` u ) ) ) |
| 111 | 110 | cnveqd | |- ( ( x = u /\ y = u ) -> `' ( ( `' F ` x ) G ( `' F ` y ) ) = `' ( ( `' F ` u ) G ( `' F ` u ) ) ) |
| 112 | ovex | |- ( ( `' F ` u ) G ( `' F ` u ) ) e. _V |
|
| 113 | 112 | cnvex | |- `' ( ( `' F ` u ) G ( `' F ` u ) ) e. _V |
| 114 | 111 9 113 | ovmpoa | |- ( ( u e. S /\ u e. S ) -> ( u H u ) = `' ( ( `' F ` u ) G ( `' F ` u ) ) ) |
| 115 | 105 105 114 | syl2anc | |- ( ( ph /\ u e. S ) -> ( u H u ) = `' ( ( `' F ` u ) G ( `' F ` u ) ) ) |
| 116 | 115 | fveq1d | |- ( ( ph /\ u e. S ) -> ( ( u H u ) ` ( ( Id ` Y ) ` u ) ) = ( `' ( ( `' F ` u ) G ( `' F ` u ) ) ` ( ( Id ` Y ) ` u ) ) ) |
| 117 | 58 | adantr | |- ( ( ph /\ u e. S ) -> F ( X Func Y ) G ) |
| 118 | 3 60 59 117 76 | funcid | |- ( ( ph /\ u e. S ) -> ( ( ( `' F ` u ) G ( `' F ` u ) ) ` ( ( Id ` X ) ` ( `' F ` u ) ) ) = ( ( Id ` Y ) ` ( F ` ( `' F ` u ) ) ) ) |
| 119 | 11 96 | sylan | |- ( ( ph /\ u e. S ) -> ( F ` ( `' F ` u ) ) = u ) |
| 120 | 119 | fveq2d | |- ( ( ph /\ u e. S ) -> ( ( Id ` Y ) ` ( F ` ( `' F ` u ) ) ) = ( ( Id ` Y ) ` u ) ) |
| 121 | 118 120 | eqtrd | |- ( ( ph /\ u e. S ) -> ( ( ( `' F ` u ) G ( `' F ` u ) ) ` ( ( Id ` X ) ` ( `' F ` u ) ) ) = ( ( Id ` Y ) ` u ) ) |
| 122 | 10 | adantr | |- ( ( ph /\ u e. S ) -> F ( ( X Full Y ) i^i ( X Faith Y ) ) G ) |
| 123 | 3 39 40 122 76 76 | ffthf1o | |- ( ( ph /\ u e. S ) -> ( ( `' F ` u ) G ( `' F ` u ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` u ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` u ) ) ) ) |
| 124 | 67 | adantr | |- ( ( ph /\ u e. S ) -> X e. Cat ) |
| 125 | 3 39 60 124 76 | catidcl | |- ( ( ph /\ u e. S ) -> ( ( Id ` X ) ` ( `' F ` u ) ) e. ( ( `' F ` u ) ( Hom ` X ) ( `' F ` u ) ) ) |
| 126 | f1ocnvfv | |- ( ( ( ( `' F ` u ) G ( `' F ` u ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` u ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` u ) ) ) /\ ( ( Id ` X ) ` ( `' F ` u ) ) e. ( ( `' F ` u ) ( Hom ` X ) ( `' F ` u ) ) ) -> ( ( ( ( `' F ` u ) G ( `' F ` u ) ) ` ( ( Id ` X ) ` ( `' F ` u ) ) ) = ( ( Id ` Y ) ` u ) -> ( `' ( ( `' F ` u ) G ( `' F ` u ) ) ` ( ( Id ` Y ) ` u ) ) = ( ( Id ` X ) ` ( `' F ` u ) ) ) ) |
|
| 127 | 123 125 126 | syl2anc | |- ( ( ph /\ u e. S ) -> ( ( ( ( `' F ` u ) G ( `' F ` u ) ) ` ( ( Id ` X ) ` ( `' F ` u ) ) ) = ( ( Id ` Y ) ` u ) -> ( `' ( ( `' F ` u ) G ( `' F ` u ) ) ` ( ( Id ` Y ) ` u ) ) = ( ( Id ` X ) ` ( `' F ` u ) ) ) ) |
| 128 | 121 127 | mpd | |- ( ( ph /\ u e. S ) -> ( `' ( ( `' F ` u ) G ( `' F ` u ) ) ` ( ( Id ` Y ) ` u ) ) = ( ( Id ` X ) ` ( `' F ` u ) ) ) |
| 129 | 116 128 | eqtrd | |- ( ( ph /\ u e. S ) -> ( ( u H u ) ` ( ( Id ` Y ) ` u ) ) = ( ( Id ` X ) ` ( `' F ` u ) ) ) |
| 130 | 58 | 3ad2ant1 | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> F ( X Func Y ) G ) |
| 131 | 70 | 3ad2ant1 | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> `' F : S --> R ) |
| 132 | simp21 | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> u e. S ) |
|
| 133 | 131 132 | ffvelcdmd | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( `' F ` u ) e. R ) |
| 134 | simp22 | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> v e. S ) |
|
| 135 | 131 134 | ffvelcdmd | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( `' F ` v ) e. R ) |
| 136 | simp23 | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> z e. S ) |
|
| 137 | 131 136 | ffvelcdmd | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( `' F ` z ) e. R ) |
| 138 | 10 | 3ad2ant1 | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> F ( ( X Full Y ) i^i ( X Faith Y ) ) G ) |
| 139 | 3 39 40 138 133 135 | ffthf1o | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) ) |
| 140 | 11 | 3ad2ant1 | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> F : R -1-1-onto-> S ) |
| 141 | 140 132 96 | syl2anc | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( F ` ( `' F ` u ) ) = u ) |
| 142 | 140 134 99 | syl2anc | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( F ` ( `' F ` v ) ) = v ) |
| 143 | 141 142 | oveq12d | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) = ( u ( Hom ` Y ) v ) ) |
| 144 | 143 | f1oeq3d | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) <-> ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( u ( Hom ` Y ) v ) ) ) |
| 145 | 139 144 | mpbid | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( u ( Hom ` Y ) v ) ) |
| 146 | f1ocnv | |- ( ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( u ( Hom ` Y ) v ) -> `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( u ( Hom ` Y ) v ) -1-1-onto-> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) |
|
| 147 | f1of | |- ( `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( u ( Hom ` Y ) v ) -1-1-onto-> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -> `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( u ( Hom ` Y ) v ) --> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) |
|
| 148 | 145 146 147 | 3syl | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> `' ( ( `' F ` u ) G ( `' F ` v ) ) : ( u ( Hom ` Y ) v ) --> ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) |
| 149 | simp3l | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> f e. ( u ( Hom ` Y ) v ) ) |
|
| 150 | 148 149 | ffvelcdmd | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) e. ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) ) |
| 151 | 3 39 40 138 135 137 | ffthf1o | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( `' F ` v ) G ( `' F ` z ) ) : ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( ( F ` ( `' F ` v ) ) ( Hom ` Y ) ( F ` ( `' F ` z ) ) ) ) |
| 152 | f1ocnvfv2 | |- ( ( F : R -1-1-onto-> S /\ z e. S ) -> ( F ` ( `' F ` z ) ) = z ) |
|
| 153 | 140 136 152 | syl2anc | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( F ` ( `' F ` z ) ) = z ) |
| 154 | 142 153 | oveq12d | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( F ` ( `' F ` v ) ) ( Hom ` Y ) ( F ` ( `' F ` z ) ) ) = ( v ( Hom ` Y ) z ) ) |
| 155 | 154 | f1oeq3d | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( `' F ` v ) G ( `' F ` z ) ) : ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( ( F ` ( `' F ` v ) ) ( Hom ` Y ) ( F ` ( `' F ` z ) ) ) <-> ( ( `' F ` v ) G ( `' F ` z ) ) : ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( v ( Hom ` Y ) z ) ) ) |
| 156 | 151 155 | mpbid | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( `' F ` v ) G ( `' F ` z ) ) : ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( v ( Hom ` Y ) z ) ) |
| 157 | f1ocnv | |- ( ( ( `' F ` v ) G ( `' F ` z ) ) : ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( v ( Hom ` Y ) z ) -> `' ( ( `' F ` v ) G ( `' F ` z ) ) : ( v ( Hom ` Y ) z ) -1-1-onto-> ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) ) |
|
| 158 | f1of | |- ( `' ( ( `' F ` v ) G ( `' F ` z ) ) : ( v ( Hom ` Y ) z ) -1-1-onto-> ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) -> `' ( ( `' F ` v ) G ( `' F ` z ) ) : ( v ( Hom ` Y ) z ) --> ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) ) |
|
| 159 | 156 157 158 | 3syl | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> `' ( ( `' F ` v ) G ( `' F ` z ) ) : ( v ( Hom ` Y ) z ) --> ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) ) |
| 160 | simp3r | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> g e. ( v ( Hom ` Y ) z ) ) |
|
| 161 | 159 160 | ffvelcdmd | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) e. ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) ) |
| 162 | 3 39 62 61 130 133 135 137 150 161 | funcco | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( `' F ` u ) G ( `' F ` z ) ) ` ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) = ( ( ( ( `' F ` v ) G ( `' F ` z ) ) ` ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ) ( <. ( F ` ( `' F ` u ) ) , ( F ` ( `' F ` v ) ) >. ( comp ` Y ) ( F ` ( `' F ` z ) ) ) ( ( ( `' F ` u ) G ( `' F ` v ) ) ` ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) ) |
| 163 | 141 142 | opeq12d | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> <. ( F ` ( `' F ` u ) ) , ( F ` ( `' F ` v ) ) >. = <. u , v >. ) |
| 164 | 163 153 | oveq12d | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( <. ( F ` ( `' F ` u ) ) , ( F ` ( `' F ` v ) ) >. ( comp ` Y ) ( F ` ( `' F ` z ) ) ) = ( <. u , v >. ( comp ` Y ) z ) ) |
| 165 | f1ocnvfv2 | |- ( ( ( ( `' F ` v ) G ( `' F ` z ) ) : ( ( `' F ` v ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( v ( Hom ` Y ) z ) /\ g e. ( v ( Hom ` Y ) z ) ) -> ( ( ( `' F ` v ) G ( `' F ` z ) ) ` ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ) = g ) |
|
| 166 | 156 160 165 | syl2anc | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( `' F ` v ) G ( `' F ` z ) ) ` ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ) = g ) |
| 167 | f1ocnvfv2 | |- ( ( ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( u ( Hom ` Y ) v ) /\ f e. ( u ( Hom ` Y ) v ) ) -> ( ( ( `' F ` u ) G ( `' F ` v ) ) ` ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) = f ) |
|
| 168 | 145 149 167 | syl2anc | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( `' F ` u ) G ( `' F ` v ) ) ` ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) = f ) |
| 169 | 164 166 168 | oveq123d | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( ( `' F ` v ) G ( `' F ` z ) ) ` ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ) ( <. ( F ` ( `' F ` u ) ) , ( F ` ( `' F ` v ) ) >. ( comp ` Y ) ( F ` ( `' F ` z ) ) ) ( ( ( `' F ` u ) G ( `' F ` v ) ) ` ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) = ( g ( <. u , v >. ( comp ` Y ) z ) f ) ) |
| 170 | 162 169 | eqtrd | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( `' F ` u ) G ( `' F ` z ) ) ` ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) = ( g ( <. u , v >. ( comp ` Y ) z ) f ) ) |
| 171 | 3 39 40 138 133 137 | ffthf1o | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( `' F ` u ) G ( `' F ` z ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` z ) ) ) ) |
| 172 | 141 153 | oveq12d | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` z ) ) ) = ( u ( Hom ` Y ) z ) ) |
| 173 | 172 | f1oeq3d | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( `' F ` u ) G ( `' F ` z ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` z ) ) ) <-> ( ( `' F ` u ) G ( `' F ` z ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( u ( Hom ` Y ) z ) ) ) |
| 174 | 171 173 | mpbid | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( `' F ` u ) G ( `' F ` z ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( u ( Hom ` Y ) z ) ) |
| 175 | 67 | 3ad2ant1 | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> X e. Cat ) |
| 176 | 3 39 62 175 133 135 137 150 161 | catcocl | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) e. ( ( `' F ` u ) ( Hom ` X ) ( `' F ` z ) ) ) |
| 177 | f1ocnvfv | |- ( ( ( ( `' F ` u ) G ( `' F ` z ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` z ) ) -1-1-onto-> ( u ( Hom ` Y ) z ) /\ ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) e. ( ( `' F ` u ) ( Hom ` X ) ( `' F ` z ) ) ) -> ( ( ( ( `' F ` u ) G ( `' F ` z ) ) ` ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) = ( g ( <. u , v >. ( comp ` Y ) z ) f ) -> ( `' ( ( `' F ` u ) G ( `' F ` z ) ) ` ( g ( <. u , v >. ( comp ` Y ) z ) f ) ) = ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) ) |
|
| 178 | 174 176 177 | syl2anc | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( ( `' F ` u ) G ( `' F ` z ) ) ` ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) = ( g ( <. u , v >. ( comp ` Y ) z ) f ) -> ( `' ( ( `' F ` u ) G ( `' F ` z ) ) ` ( g ( <. u , v >. ( comp ` Y ) z ) f ) ) = ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) ) |
| 179 | 170 178 | mpd | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( `' ( ( `' F ` u ) G ( `' F ` z ) ) ` ( g ( <. u , v >. ( comp ` Y ) z ) f ) ) = ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) |
| 180 | simpl | |- ( ( x = u /\ y = z ) -> x = u ) |
|
| 181 | 180 | fveq2d | |- ( ( x = u /\ y = z ) -> ( `' F ` x ) = ( `' F ` u ) ) |
| 182 | simpr | |- ( ( x = u /\ y = z ) -> y = z ) |
|
| 183 | 182 | fveq2d | |- ( ( x = u /\ y = z ) -> ( `' F ` y ) = ( `' F ` z ) ) |
| 184 | 181 183 | oveq12d | |- ( ( x = u /\ y = z ) -> ( ( `' F ` x ) G ( `' F ` y ) ) = ( ( `' F ` u ) G ( `' F ` z ) ) ) |
| 185 | 184 | cnveqd | |- ( ( x = u /\ y = z ) -> `' ( ( `' F ` x ) G ( `' F ` y ) ) = `' ( ( `' F ` u ) G ( `' F ` z ) ) ) |
| 186 | ovex | |- ( ( `' F ` u ) G ( `' F ` z ) ) e. _V |
|
| 187 | 186 | cnvex | |- `' ( ( `' F ` u ) G ( `' F ` z ) ) e. _V |
| 188 | 185 9 187 | ovmpoa | |- ( ( u e. S /\ z e. S ) -> ( u H z ) = `' ( ( `' F ` u ) G ( `' F ` z ) ) ) |
| 189 | 132 136 188 | syl2anc | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( u H z ) = `' ( ( `' F ` u ) G ( `' F ` z ) ) ) |
| 190 | 189 | fveq1d | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( u H z ) ` ( g ( <. u , v >. ( comp ` Y ) z ) f ) ) = ( `' ( ( `' F ` u ) G ( `' F ` z ) ) ` ( g ( <. u , v >. ( comp ` Y ) z ) f ) ) ) |
| 191 | simpl | |- ( ( x = v /\ y = z ) -> x = v ) |
|
| 192 | 191 | fveq2d | |- ( ( x = v /\ y = z ) -> ( `' F ` x ) = ( `' F ` v ) ) |
| 193 | simpr | |- ( ( x = v /\ y = z ) -> y = z ) |
|
| 194 | 193 | fveq2d | |- ( ( x = v /\ y = z ) -> ( `' F ` y ) = ( `' F ` z ) ) |
| 195 | 192 194 | oveq12d | |- ( ( x = v /\ y = z ) -> ( ( `' F ` x ) G ( `' F ` y ) ) = ( ( `' F ` v ) G ( `' F ` z ) ) ) |
| 196 | 195 | cnveqd | |- ( ( x = v /\ y = z ) -> `' ( ( `' F ` x ) G ( `' F ` y ) ) = `' ( ( `' F ` v ) G ( `' F ` z ) ) ) |
| 197 | ovex | |- ( ( `' F ` v ) G ( `' F ` z ) ) e. _V |
|
| 198 | 197 | cnvex | |- `' ( ( `' F ` v ) G ( `' F ` z ) ) e. _V |
| 199 | 196 9 198 | ovmpoa | |- ( ( v e. S /\ z e. S ) -> ( v H z ) = `' ( ( `' F ` v ) G ( `' F ` z ) ) ) |
| 200 | 134 136 199 | syl2anc | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( v H z ) = `' ( ( `' F ` v ) G ( `' F ` z ) ) ) |
| 201 | 200 | fveq1d | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( v H z ) ` g ) = ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ) |
| 202 | 132 134 92 | syl2anc | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( u H v ) = `' ( ( `' F ` u ) G ( `' F ` v ) ) ) |
| 203 | 202 | fveq1d | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( u H v ) ` f ) = ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) |
| 204 | 201 203 | oveq12d | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( ( v H z ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( ( u H v ) ` f ) ) = ( ( `' ( ( `' F ` v ) G ( `' F ` z ) ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( `' ( ( `' F ` u ) G ( `' F ` v ) ) ` f ) ) ) |
| 205 | 179 190 204 | 3eqtr4d | |- ( ( ph /\ ( u e. S /\ v e. S /\ z e. S ) /\ ( f e. ( u ( Hom ` Y ) v ) /\ g e. ( v ( Hom ` Y ) z ) ) ) -> ( ( u H z ) ` ( g ( <. u , v >. ( comp ` Y ) z ) f ) ) = ( ( ( v H z ) ` g ) ( <. ( `' F ` u ) , ( `' F ` v ) >. ( comp ` X ) ( `' F ` z ) ) ( ( u H v ) ` f ) ) ) |
| 206 | 4 3 40 39 59 60 61 62 66 67 70 74 104 129 205 | isfuncd | |- ( ph -> `' F ( Y Func X ) H ) |
| 207 | 3 58 206 | cofuval2 | |- ( ph -> ( <. `' F , H >. o.func <. F , G >. ) = <. ( `' F o. F ) , ( u e. R , v e. R |-> ( ( ( F ` u ) H ( F ` v ) ) o. ( u G v ) ) ) >. ) |
| 208 | eqid | |- ( idFunc ` X ) = ( idFunc ` X ) |
|
| 209 | 208 3 67 39 | idfuval | |- ( ph -> ( idFunc ` X ) = <. ( _I |` R ) , ( z e. ( R X. R ) |-> ( _I |` ( ( Hom ` X ) ` z ) ) ) >. ) |
| 210 | 53 207 209 | 3eqtr4d | |- ( ph -> ( <. `' F , H >. o.func <. F , G >. ) = ( idFunc ` X ) ) |
| 211 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 212 | df-br | |- ( F ( X Func Y ) G <-> <. F , G >. e. ( X Func Y ) ) |
|
| 213 | 58 212 | sylib | |- ( ph -> <. F , G >. e. ( X Func Y ) ) |
| 214 | df-br | |- ( `' F ( Y Func X ) H <-> <. `' F , H >. e. ( Y Func X ) ) |
|
| 215 | 206 214 | sylib | |- ( ph -> <. `' F , H >. e. ( Y Func X ) ) |
| 216 | 1 2 5 211 6 7 6 213 215 | catcco | |- ( ph -> ( <. `' F , H >. ( <. X , Y >. ( comp ` C ) X ) <. F , G >. ) = ( <. `' F , H >. o.func <. F , G >. ) ) |
| 217 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 218 | 1 2 217 208 5 6 | catcid | |- ( ph -> ( ( Id ` C ) ` X ) = ( idFunc ` X ) ) |
| 219 | 210 216 218 | 3eqtr4d | |- ( ph -> ( <. `' F , H >. ( <. X , Y >. ( comp ` C ) X ) <. F , G >. ) = ( ( Id ` C ) ` X ) ) |
| 220 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 221 | eqid | |- ( Sect ` C ) = ( Sect ` C ) |
|
| 222 | 1 | catccat | |- ( U e. V -> C e. Cat ) |
| 223 | 5 222 | syl | |- ( ph -> C e. Cat ) |
| 224 | 1 2 5 220 6 7 | catchom | |- ( ph -> ( X ( Hom ` C ) Y ) = ( X Func Y ) ) |
| 225 | 213 224 | eleqtrrd | |- ( ph -> <. F , G >. e. ( X ( Hom ` C ) Y ) ) |
| 226 | 1 2 5 220 7 6 | catchom | |- ( ph -> ( Y ( Hom ` C ) X ) = ( Y Func X ) ) |
| 227 | 215 226 | eleqtrrd | |- ( ph -> <. `' F , H >. e. ( Y ( Hom ` C ) X ) ) |
| 228 | 2 220 211 217 221 223 6 7 225 227 | issect2 | |- ( ph -> ( <. F , G >. ( X ( Sect ` C ) Y ) <. `' F , H >. <-> ( <. `' F , H >. ( <. X , Y >. ( comp ` C ) X ) <. F , G >. ) = ( ( Id ` C ) ` X ) ) ) |
| 229 | 219 228 | mpbird | |- ( ph -> <. F , G >. ( X ( Sect ` C ) Y ) <. `' F , H >. ) |
| 230 | f1ococnv2 | |- ( F : R -1-1-onto-> S -> ( F o. `' F ) = ( _I |` S ) ) |
|
| 231 | 11 230 | syl | |- ( ph -> ( F o. `' F ) = ( _I |` S ) ) |
| 232 | 92 | 3adant1 | |- ( ( ph /\ u e. S /\ v e. S ) -> ( u H v ) = `' ( ( `' F ` u ) G ( `' F ` v ) ) ) |
| 233 | 232 | coeq2d | |- ( ( ph /\ u e. S /\ v e. S ) -> ( ( ( `' F ` u ) G ( `' F ` v ) ) o. ( u H v ) ) = ( ( ( `' F ` u ) G ( `' F ` v ) ) o. `' ( ( `' F ` u ) G ( `' F ` v ) ) ) ) |
| 234 | 10 | 3ad2ant1 | |- ( ( ph /\ u e. S /\ v e. S ) -> F ( ( X Full Y ) i^i ( X Faith Y ) ) G ) |
| 235 | 76 | 3adant3 | |- ( ( ph /\ u e. S /\ v e. S ) -> ( `' F ` u ) e. R ) |
| 236 | 78 | 3adant2 | |- ( ( ph /\ u e. S /\ v e. S ) -> ( `' F ` v ) e. R ) |
| 237 | 3 39 40 234 235 236 | ffthf1o | |- ( ( ph /\ u e. S /\ v e. S ) -> ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) ) |
| 238 | 101 | 3impb | |- ( ( ph /\ u e. S /\ v e. S ) -> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) = ( u ( Hom ` Y ) v ) ) |
| 239 | 238 | f1oeq3d | |- ( ( ph /\ u e. S /\ v e. S ) -> ( ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( ( F ` ( `' F ` u ) ) ( Hom ` Y ) ( F ` ( `' F ` v ) ) ) <-> ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( u ( Hom ` Y ) v ) ) ) |
| 240 | 237 239 | mpbid | |- ( ( ph /\ u e. S /\ v e. S ) -> ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( u ( Hom ` Y ) v ) ) |
| 241 | f1ococnv2 | |- ( ( ( `' F ` u ) G ( `' F ` v ) ) : ( ( `' F ` u ) ( Hom ` X ) ( `' F ` v ) ) -1-1-onto-> ( u ( Hom ` Y ) v ) -> ( ( ( `' F ` u ) G ( `' F ` v ) ) o. `' ( ( `' F ` u ) G ( `' F ` v ) ) ) = ( _I |` ( u ( Hom ` Y ) v ) ) ) |
|
| 242 | 240 241 | syl | |- ( ( ph /\ u e. S /\ v e. S ) -> ( ( ( `' F ` u ) G ( `' F ` v ) ) o. `' ( ( `' F ` u ) G ( `' F ` v ) ) ) = ( _I |` ( u ( Hom ` Y ) v ) ) ) |
| 243 | 233 242 | eqtrd | |- ( ( ph /\ u e. S /\ v e. S ) -> ( ( ( `' F ` u ) G ( `' F ` v ) ) o. ( u H v ) ) = ( _I |` ( u ( Hom ` Y ) v ) ) ) |
| 244 | 243 | mpoeq3dva | |- ( ph -> ( u e. S , v e. S |-> ( ( ( `' F ` u ) G ( `' F ` v ) ) o. ( u H v ) ) ) = ( u e. S , v e. S |-> ( _I |` ( u ( Hom ` Y ) v ) ) ) ) |
| 245 | fveq2 | |- ( z = <. u , v >. -> ( ( Hom ` Y ) ` z ) = ( ( Hom ` Y ) ` <. u , v >. ) ) |
|
| 246 | df-ov | |- ( u ( Hom ` Y ) v ) = ( ( Hom ` Y ) ` <. u , v >. ) |
|
| 247 | 245 246 | eqtr4di | |- ( z = <. u , v >. -> ( ( Hom ` Y ) ` z ) = ( u ( Hom ` Y ) v ) ) |
| 248 | 247 | reseq2d | |- ( z = <. u , v >. -> ( _I |` ( ( Hom ` Y ) ` z ) ) = ( _I |` ( u ( Hom ` Y ) v ) ) ) |
| 249 | 248 | mpompt | |- ( z e. ( S X. S ) |-> ( _I |` ( ( Hom ` Y ) ` z ) ) ) = ( u e. S , v e. S |-> ( _I |` ( u ( Hom ` Y ) v ) ) ) |
| 250 | 244 249 | eqtr4di | |- ( ph -> ( u e. S , v e. S |-> ( ( ( `' F ` u ) G ( `' F ` v ) ) o. ( u H v ) ) ) = ( z e. ( S X. S ) |-> ( _I |` ( ( Hom ` Y ) ` z ) ) ) ) |
| 251 | 231 250 | opeq12d | |- ( ph -> <. ( F o. `' F ) , ( u e. S , v e. S |-> ( ( ( `' F ` u ) G ( `' F ` v ) ) o. ( u H v ) ) ) >. = <. ( _I |` S ) , ( z e. ( S X. S ) |-> ( _I |` ( ( Hom ` Y ) ` z ) ) ) >. ) |
| 252 | 4 206 58 | cofuval2 | |- ( ph -> ( <. F , G >. o.func <. `' F , H >. ) = <. ( F o. `' F ) , ( u e. S , v e. S |-> ( ( ( `' F ` u ) G ( `' F ` v ) ) o. ( u H v ) ) ) >. ) |
| 253 | eqid | |- ( idFunc ` Y ) = ( idFunc ` Y ) |
|
| 254 | 253 4 66 40 | idfuval | |- ( ph -> ( idFunc ` Y ) = <. ( _I |` S ) , ( z e. ( S X. S ) |-> ( _I |` ( ( Hom ` Y ) ` z ) ) ) >. ) |
| 255 | 251 252 254 | 3eqtr4d | |- ( ph -> ( <. F , G >. o.func <. `' F , H >. ) = ( idFunc ` Y ) ) |
| 256 | 1 2 5 211 7 6 7 215 213 | catcco | |- ( ph -> ( <. F , G >. ( <. Y , X >. ( comp ` C ) Y ) <. `' F , H >. ) = ( <. F , G >. o.func <. `' F , H >. ) ) |
| 257 | 1 2 217 253 5 7 | catcid | |- ( ph -> ( ( Id ` C ) ` Y ) = ( idFunc ` Y ) ) |
| 258 | 255 256 257 | 3eqtr4d | |- ( ph -> ( <. F , G >. ( <. Y , X >. ( comp ` C ) Y ) <. `' F , H >. ) = ( ( Id ` C ) ` Y ) ) |
| 259 | 2 220 211 217 221 223 7 6 227 225 | issect2 | |- ( ph -> ( <. `' F , H >. ( Y ( Sect ` C ) X ) <. F , G >. <-> ( <. F , G >. ( <. Y , X >. ( comp ` C ) Y ) <. `' F , H >. ) = ( ( Id ` C ) ` Y ) ) ) |
| 260 | 258 259 | mpbird | |- ( ph -> <. `' F , H >. ( Y ( Sect ` C ) X ) <. F , G >. ) |
| 261 | 2 8 223 6 7 221 | isinv | |- ( ph -> ( <. F , G >. ( X I Y ) <. `' F , H >. <-> ( <. F , G >. ( X ( Sect ` C ) Y ) <. `' F , H >. /\ <. `' F , H >. ( Y ( Sect ` C ) X ) <. F , G >. ) ) ) |
| 262 | 229 260 261 | mpbir2and | |- ( ph -> <. F , G >. ( X I Y ) <. `' F , H >. ) |