This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition in the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcbas.c | |- C = ( CatCat ` U ) |
|
| catcbas.b | |- B = ( Base ` C ) |
||
| catcbas.u | |- ( ph -> U e. V ) |
||
| catcco.o | |- .x. = ( comp ` C ) |
||
| catcco.x | |- ( ph -> X e. B ) |
||
| catcco.y | |- ( ph -> Y e. B ) |
||
| catcco.z | |- ( ph -> Z e. B ) |
||
| catcco.f | |- ( ph -> F e. ( X Func Y ) ) |
||
| catcco.g | |- ( ph -> G e. ( Y Func Z ) ) |
||
| Assertion | catcco | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G o.func F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcbas.c | |- C = ( CatCat ` U ) |
|
| 2 | catcbas.b | |- B = ( Base ` C ) |
|
| 3 | catcbas.u | |- ( ph -> U e. V ) |
|
| 4 | catcco.o | |- .x. = ( comp ` C ) |
|
| 5 | catcco.x | |- ( ph -> X e. B ) |
|
| 6 | catcco.y | |- ( ph -> Y e. B ) |
|
| 7 | catcco.z | |- ( ph -> Z e. B ) |
|
| 8 | catcco.f | |- ( ph -> F e. ( X Func Y ) ) |
|
| 9 | catcco.g | |- ( ph -> G e. ( Y Func Z ) ) |
|
| 10 | 1 2 3 4 | catccofval | |- ( ph -> .x. = ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) ) |
| 11 | simprl | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> v = <. X , Y >. ) |
|
| 12 | 11 | fveq2d | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` v ) = ( 2nd ` <. X , Y >. ) ) |
| 13 | op2ndg | |- ( ( X e. B /\ Y e. B ) -> ( 2nd ` <. X , Y >. ) = Y ) |
|
| 14 | 5 6 13 | syl2anc | |- ( ph -> ( 2nd ` <. X , Y >. ) = Y ) |
| 15 | 14 | adantr | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` <. X , Y >. ) = Y ) |
| 16 | 12 15 | eqtrd | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` v ) = Y ) |
| 17 | simprr | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> z = Z ) |
|
| 18 | 16 17 | oveq12d | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( ( 2nd ` v ) Func z ) = ( Y Func Z ) ) |
| 19 | 11 | fveq2d | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( Func ` v ) = ( Func ` <. X , Y >. ) ) |
| 20 | df-ov | |- ( X Func Y ) = ( Func ` <. X , Y >. ) |
|
| 21 | 19 20 | eqtr4di | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( Func ` v ) = ( X Func Y ) ) |
| 22 | eqidd | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( g o.func f ) = ( g o.func f ) ) |
|
| 23 | 18 21 22 | mpoeq123dv | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) = ( g e. ( Y Func Z ) , f e. ( X Func Y ) |-> ( g o.func f ) ) ) |
| 24 | 5 6 | opelxpd | |- ( ph -> <. X , Y >. e. ( B X. B ) ) |
| 25 | ovex | |- ( Y Func Z ) e. _V |
|
| 26 | ovex | |- ( X Func Y ) e. _V |
|
| 27 | 25 26 | mpoex | |- ( g e. ( Y Func Z ) , f e. ( X Func Y ) |-> ( g o.func f ) ) e. _V |
| 28 | 27 | a1i | |- ( ph -> ( g e. ( Y Func Z ) , f e. ( X Func Y ) |-> ( g o.func f ) ) e. _V ) |
| 29 | 10 23 24 7 28 | ovmpod | |- ( ph -> ( <. X , Y >. .x. Z ) = ( g e. ( Y Func Z ) , f e. ( X Func Y ) |-> ( g o.func f ) ) ) |
| 30 | oveq12 | |- ( ( g = G /\ f = F ) -> ( g o.func f ) = ( G o.func F ) ) |
|
| 31 | 30 | adantl | |- ( ( ph /\ ( g = G /\ f = F ) ) -> ( g o.func f ) = ( G o.func F ) ) |
| 32 | ovexd | |- ( ph -> ( G o.func F ) e. _V ) |
|
| 33 | 29 31 9 8 32 | ovmpod | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G o.func F ) ) |